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ABSTRACT

A finite difference technique utilizing an irregular triangular mesh and the

Wielandt inverse iteration method has been used to compute normal mode

lateral sloshing in a cylindrical ta_k with a hemispherical bottom under re-

duced but still positive gravitational conditions for a contact angle of

five (5) degrees. Results of these computations have been used to calculate,

using a Fourier series expansion, the liquid response to sinusoidal, square

wave and periodic-pulse lateral perturbing accelerations. Reduction of liq-

uid volume, gravity level, and contact angle reduce the fundamental (most

important) lateral sloshing frequency.
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NOMENCLATURE

Variables topped by bars are dimensional quantities, those without are

generally nondimensional. Underlined variables are generally vectors.

Subscripted variables are either derivatives or values of the unsubscripted

variable at the mesh point indicated by the subscript.

English Alphabet

a

A

(m)

A1

B

B

B
T

T

e

Cl2

Cl3

C

C
m

d.

1

D

Dk

- Area of zone on free-surface divided by 2_.

- Diagonal matrix whose entries are aj;

- Matrix in generalized eigenvalue-vector problem;

- Area of triangle with vertices at mesh points P1, P2' P3"

- Coefficient of _k in Fourier expansion of perturbed velocity
potential.

- Coefficient of _. cos(mOot)__ in Fourier expansion of perturbed
velocity potential.

- Coefficient of _ in approximating _/r 2 at vertex Pl"

- Matrix in generalized eigenvalue-vector problem.

- Axial Bond number = p g_ ro2/q.

- Transverse time-varying Bond number = 0gro2/q .

- Transverse Bond number based upon maximum lateral perturbing

acceleration = p gT ro2/C"

- r-coordinate of centroid of triangle PIP2P 3.

- Coefficients in difference equations connecting _l at P1 to

and atP2andP3
- Matrix in symmetric eigenvalue-vector problem.

- Coefficient of sin(m_ot) in Fourier expansion of periodic
perturbation.

- Coefficients of _i in difference equation for 7-point star.

- Interior of two-dimensional domain bounded by f, w, and the

center line;

- Matrix approximating the Laplace equation in D with zero

normal derivative on f and w and zero potential on the

center line.

- Fourier coefficient in the expansion of r in terms of _k"

V
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DL

DR

D(X)

DI,j

DI_ N

D2

D3,j

D
_v

DL
_v

DR
_v

E

f

F
X

g

gN

g_

gT

G

h

h
o

h
w

h*

w

H

- Left triangular factor of the matrix D(X).

- Right triangular factor of the matrix D(X).

- Matrix of linear system approximating the normal mode eigen-

value-vector problem.

- Terms in the diagonal entries of the matrix T.

- Submatrices of D.

- Submatrices of DL.

- Submatrices of DR.

- Set of eigenvectors.

- Shape of the equilibrium free-surface.

- Arbitrary function of time in the nonsteady Bernoulli equation;

- Input ratio used in constructing the finite-difference mesh.

- Maximum lateral force for kth mode.

_ = (l+fr2)i/2.

- Value of g at sN.

- Dimensional steady axial acceleration.

- Dmmensmonal time-varying lateral acceleration.

- Maximum value of g .
T

- Diagonal matrix with gi as entries.

- Sloshing perturbation of equilibrium free-surface (eigenmode);

- Maximum mesh spacing in triangular mesh.

- Sloshing perturbation in kth normal mode.

- Liquid depth measured along tank axis.

- Maximum vertical excursion at wall.

- Eigenmode of related problem.

- Maximum vertical excursion at wall of kth normal eigenmode.

- Mean curvature of free-surface.

vi
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I
o

I1

Jl

k

K

£

L

L
m

m

m.
1

M

M
Y

n

N

jV

P

Pg

Pi

Po

- Index, usually for points and values associated with mesh tri-

angles or stars.

- Modified Bessel functions of first kind of orders zero and one.

- Index, usually for points and values belonging to the equilibrium

free-surface.

- Bessel function of first kind of order one.

- Index, usually for functions and vectors related to kth normal
mode.

- Abbreviation for boundary condition satisfied by the equilibrium

free-surface when r < l;
W

- Rectangular coordinate in logical, equilateral triangular mesh;

- a large constant.

- Index for eigenmodes.

- Left triangular factor of the matrix S;

- Rectangular coordinate in logical, equilateral triangular mesh.

- Second order differential operator representing combined free-

surface boundary conditions.

- Index in Fourier sine expansion of perturbing function.

- Vector from mid-point of side s. to centroid of a mesh triangle.
l

- Total number of mesh points.

- Maximum moment of the lateral force caused by liquid sloshing

in the kth normal mode.

- Equivalent sloshing mass for mechanical analog for kth normal mode.

- Denotes differentiation in exterior normal direction.

- Number of mesh points on free-surface.

- Euclidean vector norm.

- Pressure.

- Gas pressure.

- Vector from mid-point of side s. to intersection of perpendicular
i

bisectors of a mesh triangle.

- Static liquid pressure at center of equilibrium free-surface.

vii
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I

%2

r

r
o

rt

r
w

R

R

S

S°

l

S o

J

sN

s
o

S
w

S

t

tI

t 2

T

U

V

- Mesh point viewed as a vertex of a mesh triangle.

- r-coordinate of mid-point of side sI of a mesh triangle.

- Radial coordinate.

- Dimensional tank radius defined in Figure i;

- also ro = rCso)'--

- Radial coordinate of point on meridian of w.

- Radius of latitude line in which f meets w .

- Right triangular factor of the matrix S .

Radius vector from the origin of the tank fixed coordinate system.

- Shape of the time varying free-surface;

- Arc length along the equilibrium free-surface.

- Vector from P. to P. + i , i=l, 2, 2 (mod 3) in a mesh triangle.
1 1

- s-coordinate of mesh point of f.

- s-coordinate of intersection of f with w.

- s-coordinate of mesh point on f at tank axis;

s-coordinate at which U = K holds in iterative determination of f

- sw = sN'

1A-1- Tridiagonal matrix S = _ T A -I.

- Time.

s-coordinates of mid-points of two adjacent mesh intervals.

- Tridiagonal matrix approximating the free-surface boundary

operator _;

- As superscript denotes transposition;

_ Period of perturbing function.

- Radial velocity _/_r .

- Intermediate vector produced by downsweep.

- Angular velocity _/r_e .

= 20/ 
- Coefficient in integration formula;

- Volume.

viii
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9

w

W

x

x(1)
R

Y

_y

z(l)

z

zt

z

z.
-3

z(O)
m

z(1)

- Maximum potential energy in kth normal mode sloshing.

- Ta_nk wall.

- Vertical velocity b_/bg .

- Coefficient in integration formula;

- Arbitrary function.

- Submatrices used in the Wielandt inverse-iteration.

- Maximum lateral displacement of the mass of the mechanical analog.

- Arbitrary vector.

- Vector of approximations to _ for mesh points not on the free-

surface or mesh line below it.

- Pitch axis about which lateral sloshing forces operate.

- Vector of approximations to

- Initially y(1)= Y;

- Vector of approximations to _ on the first mesh line below the

free -surface.

- Axial coordinate.

- Axial coordinate of points on meridian of w •

- Vector approximations to $ on the free-surface.

- kth and jth eigenvectors in an orthonormal (B-orthonormal) eigen-

system.

for mesh points not on free-surface.

- Initial guess for z.

- Improved approximation for z.

- Lateral force action point for the mechanical analog.

Greek Alphabet

(z

%

F

Fk

- As subscript denotes the axial direction.

- Coefficient of _k in Fourier expansion of _(0).

- Angle between normal to tank wall and vertical.

- Coefficient of _k in Fourier expansion of _(1).

ix
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8jk

As

At

®

X

I

°

J

Kk

o

v

{o

0

T

_p

_n,j

- Ratio of periodic pulse width to half period of the perturbing

acceleration.

- Kronecker delta = i if j = k, otherwise= O.

- Mesh spacing on s.

- Perturbing pulse width.

- Angular coordinate.

- Contact angle.

- Spring constant for mechanical analog.
2

- Approximation to the eigenvalue _ ;

- Twice the curvature of f at r = 04

Eigenvalue in generalized eigenvalue problem.

Eigenvalues in an orthonormal (B-orthonormal) eigensystem.

- Guessed value of X in calculating f .

- Guessed X in Wielandt inverse-iteration.

- Improved l in Wielandt inverse-iteration.

- Number of diametrical nodes in perturbed surface;

- Integer index.

- Integer index.

- Arc length along meridian of tank.

- Total length of meridian tank.

- Dimensional liquid density.

- Dimensional surface tension.

- As subscript denotes transverse (lateral) direction.

- Dimensional velocity potential.

- Approximation to ¢ at the ith mesh point in a mesh triangle

or star.

- Vector of approximation to ¢.

- Vector approximating ¢ on f.
n

- jth component of _n"

X
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½

 l,k

 2,k
(o)

Ck

_n

¢,,-

Ck

Yk

co o

Q

- Vector component of _ for points on f.

- Vector component of _ for points not on f.

- _i corresponding to kth normal mode.

- _02 corresponding to kth normal mode.

- Initial guess for eigenvector on f.

- Dimensionless velocity potential.

- ¢ for kth normal mode.

-

- Modified @k to give _ as vertical excursion at rw
w

- Normalization factor for 8 *"
"k'

- Eigenvector in orthonormal (B-orthonormal) eigensystem.

- = _kbk(r).

- Frequency;

2
- _ is eigenvalue for normal mode sloshing corresponding to

o

- _k _ is eigenvalue for normal mode sloshing corrpsponding to

- Circular frequency of periodic perturbing functions.

- Angular rotation rate of tank-fixed coordinate system.

xi
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Sb_ARY

Lateral sloshing of liquids in a cylindrical tank with a hemispherical bot-

tom under reduced but positive gravitational conditions for various tank

fill volumes has been analyzed for both normal mode oscillations and forced

oscillations produced by sinusoidal, square wave, and periodic pulse lateral

perturbing accelerations. Calculated results are limited to a constant

contact angle condition of 5 degrees. The range of gravitational conditions

considered is limited to cases in which the dimensionless Bond number

B = ogGro2/_ (0 , _, ro and _ being the liquid density, steady axial

gravitational body force per unit mass, tank radius and surface tension)

ranges from zero to 50. The liquid volume is varied so that the center-

line dept% between the liquid meniscus and the tank bottom, ranges

from Ool to 3r .
O

Normal modes are c_icul_ted by finite-difference method@. Difference

equations are constructed on an irregular triangular mesh; and eigenvalues

and eigenfunctions are obtained by the Wielandt inverse-iteraSion technique.

The response to the specified periodic lateral perturbing accelerations is

calculated by a finite Fourier analysis utilizing results of the normal

mode calculations.

General conclusions include: (a) The fundamental sloshing frequency is low-

1
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ered by reducing liquid volume, axial gravitational body force, and the

contact angle. (b) The computation of the response to lateral perturbing

accelerations is easily effected by the method used; but engineering

sloshing computations are more readily made with the aid of an equivalent

spring-mass mechanical analog. Mechanical analog parameters have therefore

been computed, and those for the first normal sloshing mode are presented.

These are adequate for engineering computations when the first term is

dominant in the Fourier series for forced liquid motion. (c) The ir-

regular-triangular, finite-difference, Wielandt inverse-iteration scheme

appears adquate for this type of problem when currently available digital

computers are fully utilized.

2
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INTRODUCTION

The oscillation of bodies of liquids has been of interest to scientists and

mathematicians for over one-hundred years (See references given by Lamb(l)*).

In the recent past, this subject has been of special importance to the de-

signers of rocket propelled space vehicles because liquids comprise a large

percentage of the total mass. The oscillation of liquids in rocket propel-

lant tanks imposes reaction forces on the tank walls which are important in

the design of guidance, control, and propulsion systems. This problem has

been thoroughly studied and there now exists a large literature about slosh-

ing under conditions _hen surface tension is not important. The bulk of

currently available analysis of sloshing is limited to small amplitude anal-

ysis and has until recently (2,3) avoided complications arising from surface

tension effects such as the curvature of the equilibrium surface. Up to

date examples of conventional sloshing literature include the work of

Moiseev (4) and Abramson (5).

The technical objective of this study is to extend calculation of linear

sloshing to cases where the effective gravitational acceleration acting on

the liquid is so small that surface tension effects become important.

* Reference numbers are superscripted in parentheses.

3
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Specific objectives of this study include (a) determination of natural

frequencies of liquids in cylindrical tanks with hemispherical bottoms as

affected by the level of steady axial acceleration, surface tension and

density properties of the liquid, and the volume of liquid in the tank; and

(b) determination of the response of liquids to lateral perturbing

acc elera tions.

The linear analysis used here does not treat large amplitude effects; results

must be c_n_ously interpreted for finite amplitude. It has been shown (2'5)

that the resonant sloshing frequcncy of a liquid of moderate viscosity is ac-

ceptably close to the first normal mode sloshing frequency obtained from in-

viscid analysis, even in small scale experiments. Hence, viscosity is ne-

glected. It is also assumed that surface tension, density, and wetting prop-

erties are constant and do not vary dynamically.

Analysis for this study uses a frame of reference fixed to the container.

This is shown in Figure i. A space vehicle acted upon by a lateral

perturbing force will be translated laterally and rotated relative to an

external fixed coordinate system. The liquid contained in the tank will

not be directly acted upon by the lateral force but, rather, indirectly

acted upon by the moving walls of the tank. From an analytic

viewpoint, it is more convenient to consider the tank fixed. When a

transformation is effected from the fixed coordinate system to the coordinate

system moving with the tank, the liquid can be considered as being

LOCKHEED MISSILES & SPACE COMPANY
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influenced directly by lateral perturbing accelerations relative to a tank

fixed with respect to the moving coordinate system.

The mathematical problem attacked in this study takes the form of a linear

boundary value problem. Basic assumptions are that the liquid

is incompressible, inviscid, and its motion irrotational. Solution of

this problem involves obtaining solutions to Laplace's equation in the

interior of the liquid subjecttoazero normal-velocity boundary condition

at solid walls and a condition on the free-surface derived from the non-

steady state Bernoulli equation. The problem is posed completely by the

following set of equations in dimensionless form:

ir r + 1 _ + 1r r -2 _ee + _zz = o in D , (i)
r

Cn 0 on w , (2)

1 8 rhr i hee

r _-r (1 + f 2)3/2 + --2r (1 + f 2)1/2 - BO_ h
r r

+ B r cos e - (i + B_) @t = 0 on f ,
T (3)

h t = _ - f @ = (i + f 2)i/_/9 @ on f ,z r r r n
and (4)

h = 0 at r = r if r = i , or
r w w

2)1/2 [ (i - r 2)1/2 cos ® + r sin @] h athr = (i + fr w w r
w

if r < 1 .
w

r=r
w

(5)

5
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The first two terms of Equation (3) contain the effect of surface tension

and the fourth contains the effect of lateral perturbing accelerations.

this analysis it is assumed that the contact angle is constant, hence the

end conditions on h given by Equation (5).
r

In

Solution of the problem just posed falls into two parts. First, eigenvalues

and eigenfunctions of the normal mode sloshing problem are obtained for

the case when the perturbing accelerations are zero. Second, the functions

thus obtained are used to expand the periodic time h_story of the p_rt_rb_n_i

accelerations in a Fourier series.

Several schemes were brie_'ly considered for obtaining numerical solutions

to the problem. Amon_ these one involves construction of the velocity

potential as a series of the product-type solutions obtained by separating

variables in Laplace's equation. Boundary conditions are satisfied by a

least-squares collocation method(6)--that is, the boundary conditions

are app]ied at a number of points on the boundary larger than the n_er

of terms in the series used_ and the set or equations thus obtained

is solved in the least-squares sense. Alternatively, finite-difference

techniques offer more promise of accuracy, particularly when the contact

angle is small. Other investigators (7) have experienced numerical dif-

ficulties in obtaining satisfactory convergence for the series expansion

in the same type of problem. Further, the use of an irregular-triangular,

finite-difference mesh offers significant advantages. First, the mesh is

LOCKHEED MISSILES & SPACE COMPANY
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space-filling; no difficulties are encountered in applying boundary conditions

at places where the boundary intersects mesh lines. Second, the mesh can be

constructed so as to facilitate obtaining accurate representation of the

boundary conditions.

7
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PROBLEM FORMULATION

The purpose of this section is to detail the derivation of the boundary

conditions peculiar to this problem. The aasumptions used in this

analysis are that the liquid is incompressible_ inviscid_ and that it

behaves irrotationally. This allows application of the nonsteady state

Bernoulli equation to the free-surface

P +

p
½1: _- __12 + go_(:_+_)- g_.rco._e + _

l (_. _,)2 : i_m12+: _ _ - : i__12= F(:),
(6)

where o is the velocity potential defined by

u = CO-

r ,

v = I
r _e ' and

w = _.

(7)

The choice of the function of time on the right hand side of this equation

is arbitrary and, for convenience, is set equal to Po/P, the static liquid

pressure at the cen_er of the equilibrium meniscus divided by the

liquid density. The liquid pressure at the interface is related to the gas

pressure through the surface-tension and the mean curvature of the free-

8
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surface by means of the equation

Pg - P = 2_H = a

_r -2 1/2 + _--2 _-e r )i(1 + _2+12Se)__ r (1 + _2+1-2_---2se /2
r r r

(s)

Substitution of this relation and po/p for F(_) into equation (6) results in

2H-_I_v_- 12 g_(?+_)+ cos e-p - gT r m_

11_ol2 Pg" Po- ½(_.o._)2__ i__12= o

(9)

The kinematic condition is derived as follows. Consider s = s(r,e,{).

The total derivative of s with respect to time is written

ds _{ + _ "dr + 1 se de
at r d£ r at

Use of the definition of the velocity potential results in the following

familiar form for the kinematic condition

- _2 _e me (io)

The non linearities of the problem appear in the free-surface boundary

conditions, Equations (9) and (lO). These can be linearized by assuming

9
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that the free-surface is the sum of an axisymmetric equilibrium surface

and a small time-varying perturbation h ,

_(r, e, {) = f(_)+ _(r, e, {) •

Substituting this into Equation (9) and neglecting the O(h 2) terms (all

angular velocity terms are of this order) yield

(n)

_ r + r i 88

0 r _r (i + _r2) I/2 r _r (I + _2) 3/2 + r2r (i + { 2 ii/2
/ .... ,

Pg-Po
- - r cos 0 - c_{ - O.-go(f g_ h + gm

The first, fourth, and last term_ sum to zero; they form the equation of

the equilibrium surface

o i d rf- Pg - Po
r _ gc f - =0 •

° r dr (i+ f_)l/2

(12)

With these deleted_ the linearized free-surface condition becomes

_ { I _ rh- h88 1rt{ 5/2 + _ i +

r r (13)

+ gm r cos 8 - _t = O.

i0
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Substituting Equation (ii) into Equation (I0) and linearizing give the

kinematic condition in the form

d? (l_)g£ = _z - _ d-_ "

Formulation of the problem is completed by nondimensionalization

with the use of the following definitions

- r z - _' s "_ f =_ , h
r - ro ' - ro ' = ro ' o = ro '

((1 + B) -6-)_r°i12,

2

B(_ og(xr°2 " B = PgT ro-- _ _ •

(15)

Introducing Equations (15) yields the problem statment given in the Introduction:

+ _i @ + ! @ee + @ = 0 in D@rr r r 2 zz
r (i)

¢n = 0 on w , (2)

1 _ rhr 1 hee

r _ 2"3 + ;2 2_ - B(_ h

l+fr r

+ B r cos e - (i + BG) Ct = 0 on f
T

ii
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ht = z¢ - fr @r on f , and

h = 0 at r = r if r = i , or
r w w

h = (I + f 2 1_ (i - r ) cos ® + r at r r

r r w w r ww

if r < i .

(5)

with the equilibrium surface defined by the following equation and

boundary conditions

rf
id r

rdr_ l+f2"r

dm f' = 0 at
dr

B f - X = 0
CZ

r = 0 , and

drdf (I + f 2)i/2 I 2 1/2 }
- r cos ® - (i - r ) sin ®

r w w at r : r •
w

(16)

(17)

Here _ is a parameter related to the pressure difference across the

vertex of the equilibrium surface located at the origin.

In the foregoing, it is assumed that B >- O. Oscillation can take place

for B_ < 0, but only for small values of IB_I beyond which the surface

becomes unstable. This region is not considered in this study.

The problem posed by Equations (1) (5) and (16) and (17) is a linear

boundary value problem. Equation (3) is

12
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inhomogeneous. The implication is that the solution can be obtained in

two parts. The problem is first made homogeneous by setting B to zero
T

and solving the normal mode problem. The result of this is a set of eigen-

functions which is then used in a Fourier series expansion to obtain the

response to transverse perturbing accelerations.

Normal Mode Problem

Letthe periodic time dependence and the angular dependence of _ and h for

the kth normal mode be

¢ = _k (r, z) cos e cos%t

h = _ (r) cos e sin_okt •

When these expressions are substituted into Equation (3) with B = 0 and
T

Equation (4), there follows

i_ r i
(i + BG_k_ k - B _ + r _ - -2 = 0

(i + f 2)3/2r r ( 1 + fr2) 1/2

_k_ = _k- fr _k = (i + fr2)1/2 Sk
Z r n

,z = f(r) (18)

The boundary conditions on hk and Sk are the one on h in Equation (5)

and

13
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_(o) = o, _k= 0 on __, _d _k(O,z)--O. (Zg)
n

Solution of this problem yields a set of eigenfunctions [_ k} ,

2
eigenvalues [_k ]' and eigenmodes (hk}. The method used in this study to

obtain these quantities is detailed in the next part of this report.

Response to Perturbing Accelerations

Fourier Series Expansions: For a sinusoidal perturbation of amplit_de B ,
T

B = B sin m t ,
T T 0

the velocity potential of the perturbed motion can be represented as a

Fourier series

= cos 6 cos co t E Ak @k(r, z)
o k

(20)

where the solution to the normal mode problem, @k(r, z), satisfies Equations

(18) and (19), but not (_) and (4). Inserting the series into

Equations (}) and (4), the free surface and kinematic boundary conditions

for the perturbed motion_ and combining the results lead to

2 2) Ak @k ]B co r on z = f(r)(z + B) 7_ (cok -% = _ o
k

Now_ r can be expressed as an expansion in @k

r = _ Dk @k[r, f(r)] .
k

evaluated on z = f(r) ,

(21)

14
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The %k

ality condition (8)

's and corresponding hk'S form a biorthogonal set with the orthogon-

rw | = 0 for k _ £ ,

/ r @k h£ dr Io _ 0 for k = Z •

(22)

Use of this in Equation (21) yields an expression for the Fourier

coefficient
r
w

r2dr
Dk= r

f w _k _ rdr
o

Thus_ the solution for A_ for sinusoidal excitation is

i B Dk m
T 0

= 2 2
%-coo

(23)

(24)

so that the velocity potential for the sinusoidally perturbed motion becomes

^

% = BT cos 8 cos COot E Dk2 coo 2 %k (r, z) (25)

k "Ok - coI+B o

The procedure for obtaining the solution for any periodic perturbation that

possesses a Fourier series expansion of the form

B = ]_T E Cm sin (r_Oot)
T

m

is similar. The solution is

where

= cos e E 9k (r, z) Z Ak(m) cos (mOot)
k m

^

(m) Dk B m C coT m oAk
(1 + B) %2 _ m2%2

(26)

15
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Particular perturbations of interest are the square wave and the periodic

pulsing accelerations. The coefficients Dk are computed from Equation (23)

and the C's are obtained by the expanding the perturbing acceleration
m

function in a Fourier series. The C's for square wave and periodic
m

^

pulse perturbations of amplitude B (see Figure 11) are as follows.
T

Square wave:

Cm = { 04 ' m even
, m odd :

Periodic Paise:

I 0 , m even
Cm = 4 m-I m6w

( - i) 2 sin -_- , m odd

where 6 is the ratio of At to _T2 = W/_o ' the ratio of the perturbing

pulse width to half the period of the perturbing function.

Use of these gives the following solutions for the velocity potential.

Square wave: _ co co _ coS(mot)- _ cos e Z Dk _k Z o
I+B w 2 2 2

k=l m=l _k - m _o
m odd

Periodic Pulse:

cos e _ Dk Ck

w 2 2 2
i + B k=l m=l _k - m LGo

m odd

m-i mSw

_o (-1) 2 sin-_- coS(mot)

(27)

(28)

16
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Most interest, however, is centered on the vertical rise of the liquid at

the wall when perturbed by lateral accelerations. The basis for the

calculation is, of course, the kinematic condition, Equation (4). Use

of this together with the velocity potentials for sinusoidal, square wave,

and periodic pulse lateral perturbing accelerations yields the following.

Sinusoidal:

^ l+fr2 _ 1B( 11/2 _ Dk
h - sin _o t 2 2 _kn z=f(r)

8=0 I+B k=l _k - _
r=r o r=r

W W

(29)

Square wave_

hle=o -

r=r w

[o ]z
k:l m:lm(_k2-m % ) z:f(_)

m odd r=r
_g

(3o)

Periodic Pulse:

_(l+fr2)l/2 _ [hi : -4 k..ZlDk ]_
e=o I+B w = m=l
r=r m odd

m-1 m6w

(-l)--2-sin--_-sin(rmOot) ] _kn] .(31)
m(mk2-m2mo2) z=f(r)

r=r
_g

A Simpler Approximation: Calculations using the techniques just des-

cribed can, in general, be used to compute, with the aid of the tabulated

results of this stud_the response of liquids in cylindrical tanks with

hemispherical bottoms to any periodic lateral perturbing acceleration

17
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with period T = 2 w/_ o. It is often desirable, however, to treat

dynamic problems in a simpler way. The normal mode calculations to be

described in the next part of this report can be used to compute para-

meters of an equivalent mechanical analog with which approximate dynamic

computations can be made with somewhat less effort. The theoretical basis

for this is outlined below.

The pressure in a liquid which is sloshing in a container can be computed

from a knowledge of the velocity potential using the nonsteady state

difference across the free surface (Equation (8)). It may be shown that

the pressure within the liquid consistent with the limitations of the

linearization of the lateral sloshing problem is given by

P Pg £ ! b _-__ r

(2)o p i+{_

(32)

The first four terms on the right in this equation represent the contributions

due to surface tension and gravitational body forces, second and fourth are

merely the hydrostatic head, and the third appears only if surface tension

effects are considered. The last term in this equation is the contribution

due to sloshing of the liquid. The first four terms will contribute nothing

to lateral forces on the tank since they represent the static equilibrium

balance, only.

18
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Equation (32) can be used to determine the lateral force acting on the tank

due to k-th normal mode sloshing from the velocity potential

@k(r,z) cos e cos _k t . Using the notation of Figure l, the lateral force

due to the k-th mode is given by

2w _=_ o

f f p sin # cos e rt d_ de
o g=0

and its maximal value is

= f_o O@k(rt,_t ) rt sin # d._Fx o (33)

The expression, obtained in a similar fashion, for the maximum moment of

the lateral forces generated by the k-th normal mode is

= _ _ f-o
0

O{k(rt'zt) rt zt sin # d_. (34)

The ratio of M to F is, of course, the point of action, 7., of a
y x

single force on the axis which can be substituted for the integral of the

lateral component of pressure forces acting on the tank.

The quantities just calculated can be related to parameters of an equiva-

lent spring-mass oscillator as follows. The maximum force imposed by an

oscillator and the maximum potential energy stored are given by

and

F = M_ x
x

= _ -2
? _x

19
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where x is the maximum displacement. Elimination of the parameter

results in a formula for the spring constant as a function of the maximum

lateral force and potential energy stored in the system

2

#
x

29
(36)

This constant can be calculated by use of the integral

r

wO/ w _k (r'_) _n @k(r'z)(l+fr 2)I/2 [d[ (37)= To

The magnitude of the mass to be substituted for the liquid sloshing in

the k-th mode is obtained by dividing the spring constant by the square of

the appropriate frequency.

_2
= x (38)

For convenience in making calculations, these expressions can be non-

dimensionalized with the use of Equation (15). The mechanical analog

parameters equivalent to k-th normal mode sloshing are as follows.

Maximum lateral force:

E

_ x _ w(I+B )_k _'oFx _r °
@k(rt, zt) rt sin _ dE

(39)

2o
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Maximum moment :

YM =
y 2

_r o

: w(I+B )_k 6 o @k(rt, zt ) rt zt sin 13 d_ .
(4o)

Lateral force action point:

r
o

M
_ Y

F
X

(41)

Equivalent spring constant:

w(l+B_)_k2 Ifo_° _k(rt, zt)rt sin _ d_12

V
(42)

Equivalent sloshing mass:

3
or

0

Wlfo _° _k(rt, zt)rt sin_ d[] 2

V
(43)

where V is given by

V
rw 3$k (r'z) )1/2

@k (r'z) 8n (l+fr 2 rdr

the integral being taken over a meridian of the equilibrium free-surface.

21
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The quantities Z, _ and_ are homogeneous in Ck and therefore independent

of the amplitude of the eigenfunction; however, Fx and My depend linearly

upon the amplitude. From these facts, the displacement history of an

equivalent mechanical analog of kth mode sloshing can be computed as the

solution of a dynamics problem that is much simpler than determining the

motion of the liquid. The procedure is to compute an equivalent spring

constant and sloshing mass from Equations (42) and (43). These can be

used in the simple, spring-mass dynamical model shown in Figure 1 and

the excursion x produced by a lateral perturbing acceleration computed.

The maximum value of x can be inserted into the first of Equations (35)

to establish the maximum lateral force. The maximum vertical excursion

at the wall of the kth mode wave, _ , can be determined by modifying
W

the amplitude of the eigenfunct.ion Sk in Equation (39). In fact,

replacing @k by

@k_ = w _k

ro Yk

with

Yk = (l+fr2)l/2 ] z:f(r)

r=r
w

gives a normalization in which the vertical excursion at the w_ is

% . Consequently, % can be determined from
w w

22
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9
x

w

_(l+B_)_k2 f-[o _k(rt, zt)r t

Yk o

sin _ dE . (4k)

The corresponding moment and action point are determined from

_ro _ Yk o

_k(rt, zt)rtzt sin 6 d_

and Equation (41).

23
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NUMERICAL ANALYSIS

Choice of Method

Computational Formulation of the Problem.

and

= @(r,z) cos be cos et ,

h = h(r) cos _8 sin _t ,

B :o J'1

Introducing

in (1) (5), setting B _ 0 , and combining the two free-surface

equations into a single one by eliminating h yield the well-posed

eigenvalue-function problems:

2

l %+- _r + @zz ) + @ = 0 in D-(_rr r
r

(47)

= 0 on w
n

i I i r 81% r _r [ 2 _'-r (g}n) l

_ 2_ = 0 on f

and

2

• °n)

(48)

(49)

with the boundary conditions

= 0 for
n

odd _(gor Cn) = 0 for _ even (5o)

at r = 0 and either

_-_(g @n ) = 0 at r=l (5_)

24
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when the equilibrium free-surface intersects the wall in the cylinder or

_-_ (g@n) = (I - rw cos ® + rw sin ® g@n/rw (52)

at r = r when the intersection lies in the hemisphere. Here s denotes
w

arc length on f . The special case in which the equilibrium free-surface,

the cylinder, and the hemisphere have a common point is not covered in

this formulation.

Because the boundary condition (50) holds, the second order differential

operator, say _, acting on @n in (49), including the boundary conditions

(50) and (51) or (52), is invertible when _ and B are not both zero, that is,

@n = _-i ( 2 ¢) on f . (53)

From the circular and angular symmetry of (46), (47) , and (48),

and

z) = o for odd (54)

(0, z) = 0 for _ even (55)
r

are the boundary conditions on the axis, r = 0 .

Note that the introduction of (46), removes the e-dependence from

(47) and (48); nevertheless, the solution _(r, z) may be viewed as

circularly symmetric in three dimensions because it is a function of only

r and z -- this approach aids in understanding the finite difference

formulation to follow.

25
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The discussion is now restricted to the case of particular engineering

interest, namely _ = l, in which the eigenmodes have a single diamet_al

node and vibrate in an anti-symmetric manner. Mathematically the problem

is a mixed boundary value problem for the eigenvalue-function pairs Ie, 91

that satisfy the potential equation (47) within the liquid subject to

prescribed values along the axis (54 ) and to normal derivative boundary

conditions on the wall (48) and on the equilibrium free-surface (53).

The range of parameters for which the solutions to the problem are re-

quired include, at least, the intervals

0 _B _ 50 , for axial Bond numbers ,

and

O.i % h _ 3 , for center depths.
o

Even for a fixed contact angle (® = 5 degrees is used in most of the

calculations_ the domains D vary widely in shape: some resemble

puddles in the center of the hemisphere, some half-filled test tubes,

some thin crescents covering most of the hemispherical surface, some have

a hemispherical free-surface, some a nearly flat surface with a pronounced

meniscus. In view of the variety of shapes involved and experience with

similar problems with a limited range of shapes, it seems unlikely that

any reasonable linear combination of known special functions or harmonic

polynomials could be made to satisfy both the potential equation and the

boundary conditions efficiently for such a variety of domains.

On the other hand, the system determining the eigenvalue-function pairs

26
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I _' _ I is of a form suitable for solution _y finite difference methods

provided that an adequate mesh can be generated for each domain.

The Mesh. Viewing the mesh, which is two-dimensional, as circularly sym-

metric in three dimensions gives directly an insight into the correct

normalization of the difference equations: each linear element must be

rotated about the axis to generate a conical zone and each area must be

rotated to generate a volume. The constant w will be removed from

each equation.

A suitable two-dimensional mesh would:

(i) approximate the curved boundaries of a radial section of D

by polygonal lines,

(2) be reasonably regular near the free-surface,

(3) have more points per unit area near the contact angle than

elsewhere, and

(4) permit the potential equation (47) to be easily approximated

by symmetric difference equations with a small truncation error.

An irregular-triangular mesh produced by a modification of a well-proven

mesh generator developed at Lawrence Radiation Laboratory (9, iO) satisfies

the first three criteria and the ease of approximation part of the fourth.

The mesh points are the images of the vertices of a connected set of

equilateral triangles forming a region similar in shape to a radial

section of D; mesh lines map into mesh lines, boundaries map into boundaries,

and each interior mesh point has six neighbors. If h is the maximum

27
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mesh spacing, the truncation error is O(h) when all triangles in the

mesh are acute (ii) However, the almost unavoidable appearance of a

few obtuse triangles produces a larger truncation error and also leads

to asymmetric difference approximations. Fortunately, the obtuseness

can be confined to regions where the potential gradient is small, well away

from the free-surface.

The Finite-Difference Approximation. The finite-difference approximation

to the free-surface boundary condition (53) takes the form

TRn - k A _ = 0 (56)

where

and _n are vectors of values approximating the potential and

its normal derivative at the mesh points on f ;

2
k is an approximation to _ ;

A is a diagonal matrix whose entries are i/2w times the areas of

the conical zones used to approximate the equilibrium free-

surface; and

T is a tridiagonal, symmetric, irreducible, and probably positive definite

matrix approximating the differential operator _ (all examples

of T have been positive definite).

It is routine to approximate the potential equation (47) by replacing the

integral of the Laplacian of @ over a mesh region by the integral of the

normal derivative over the boundary of the region (I0'12) Each acute

28
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triangle is subdivided into three quadrilaterals by its perpendicular

bisectors; and the mesh region associated with each mesh point is the

union of such quadrilaterals, six for interior points, two or three for

boundary points, and one for the mesh point at the vertex of the contact

angle. The difference quotient of the potential, _i' at adjacent mesh

points approximates the normal derivative along bounding segments of

the perpendicular bisector separating them; along the wall, the normal

derivative vanishes; and along the free-surface, inverting T in (56)

yields an approximation to the normal derivative in terms of all the

values of the potential on the free-surface. Each approximation to

the normal derivative must be multiplied by the area of the conical zone

generated by the line segment to which it applies. A difference equation

relates approximate potentials, _i' i:l, 7, ina seven-point mesh star, say

dl%+"" +d4 4 + ....+d7

and connects the value at the center, here T4' with the values of _i at

the _ix neighboring mesh points. The coefficients d., i _ 4, are
l

negative and d4 is, in general, the negative of the sum of the other d. plusi

an approximation to the integral of + _/r 2 in (47), namely: twice

the area of the mesh region divided by the radius of the mesh point with

which it is associated (the approximation reflects the fact that the

potential on the free-surface tends to vary linearly with r near the

axis). As a consequence of (56), the difference equation for a mesh

point on the free-surface involves every mesh point on the free-surface.

29
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The boundary condition (54) is accommodated by suppressing the d. be-1

longing to points on the axis and leaving the other coefficients unchanged.

Let _2 be the vector of approximations to the potential at mesh points

not on the free-surface and let _I be the vector of approximations on

the free-surface. With this partition, the linear system approximating

the differential system (47), (48), (53), and (54), at mesh points in

the interior of D , on the wall, and on the free-surface, but not on the

axis, takes the form

D22 -21

- D12 DII- _S -I

= 0 (58)

with

S-I = 2 AT -I A

representing the contribution of the free-surface boundary condition (56).

The matrix D22 has seven nonzero diagonals (one for each of the coef-

ficients in (57));the matrix DII is tridiagonal; the matrices DI2 and

D21 have two nonzero diagonals which are symmetric with respect to the

principal diagonal of D(X). The matrix S , inheriting the properties of

T , is tridiagonal, symmetric, irreducible, and positive definite; conse-

quently, S-I is strictly positive and has no zero entries.

For meshes consisting entirely of acute triangles, the matrix D(X) is

symmetric; Dll and D22 are positive on the principal diagonal, non-

positive elsewhere, strictly diagonally dominant, and nonsingular; and

D12 and D21 are nonpositive.

3O
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The introduction of obtuse triangles into the mesh does not change the

location of the nonzero entries in D(X); however, the approximations

used for obtuse triangles, detailed later, lead to asymmetric matrix

entries--in fact, some off-diagonal entries may become positive. Never-

theless, because the eigenvalues and vectors of D(k) turn out to be

real and well-separated, a continuity argument, verified by numerical

experience, shows that some asymmetry, or obtuseness_ can be tolerated

far from the free-surface, without vitiating the methods derived for the

strictly acute, symmetric case. Thus we follow Ostrowski's recommenda-

tion (13) and use the symmetric method for both cases.

The Transformed Eigenvalue-vector Problem. Expanding (58) gives the

generalized eigenvalue-vector problem

with

and

[ A- XB I 3__ :0

-I

A : DII DI2 D22 D21

(59)

B = S -I

where B is positive definite and A and B are symmetric N xN matrices,

N being the number of mesh points on the free-surface. Three facts

f _

concerning the eigensystem of (59) are relevant here_14j:

(i) there are N real eigenvalue-vector pairs I kk, _k I such that
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(2) the eigenvectors can be chosen so as to be B-orthonormal,

that is,

T

_j B_ k = 6jk =
(6o)

with the superscript T denoting transposition; and

(3) if the variable vector x is B-orthogonal to a set of eigen-

vectors, E , then

X = min
X

(61)

is the smallest ^" ..... _'" _"_'_ +_ an _g_r_+_ _ the _-o_+hogona!

complement of the subspace spanned by E .

The eigensystem of (58 ) consists of the N eigenvalue-vector pairs

T

I ' ' k) I

connected to the solutions of (59) by the relations

(62)

and

_i, k = '_k

-i

_2, k =-D22 D21 _i, k

A peculiarity of this problem is that only the N-dimensional subspace

spanned by the vectors (62) is of interest within the M-dimensional

space on which the matrix in (58) acts (M being the total number of mesh

points and N the number of mesh points on the free-surface).
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Because the matrices -i S-I
DII and have hundreds, if not thousands

of entries, all nonzero, solving either (58 ) or (59) is infeasible. A

congruence transformation on the matrix (58) by the nonsingular matrix

! 0

0 R

(63)

where S = LR and R : LT (and I is the (M - N) x (M - N) unit

mat r i x) leaves the eigenvalues unchanged; the eigenvectors of the con-

gruent matrix differ from those of (58 ) in that the surface component

_i is replaced by

Z =
-i

L

(64)

Set _y = qO2 •

The resulting linear system

D22 D21 L

RD12 RDII L - kl

= O (65)

is quite sparse (RDI2 and D21 L have three nonzero diagonals and

RDII L has only five) and _ affects only the diagonal entries. Con-

sequently, solving (65) and recovering the surface component "of the

eigenvector via (64) seems a practical way to solve (58).

The Modified Wielandt Inverse-Iteration.

(59), namely,

Reducing (65) to a form analogous to
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IC - XI] z = 0 (66)

with

C = RDII L - RDI2 D22 -I D21 L

and

D22 -IZ = - D21 L

provides the motivation for the choice of algorithm to solve (65). (Observe

that the three facts adduced about the eigensystem of (59) reduce, when

A and B are replaced by C and I , to the ordinary facts about the

eigensystem of the symmetric matrix C .) The Wielandt inverse-iteration

with the eigenvalue improved by forming the Rayleigh quotient at each

step (13'15) is a pogular and efficient way to solve problems of the form

_(0)(66). In this method one guesses a which is, hopefully, close to

some eigenvalue X. and chooses a vector z (0) which is, hopefully, not
0

deficient in the eigenvector zj; at each iterative step one solves the

linear system.

I C - k(0) I} _z(I) = _z(0) , (67)

forms the Rayleigh quotient

z(1)T C z(1)

I(i) -- (i)
= z(1)T z

, (68)

and replaces

and

by

£(o)by z(1)/(£(1)T£(i))1/2

The iteration continues until appropriate convergence criteria are satisfied.
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Let the pairs

system of C

and

[kk' _k} ' k = i, ..., n , be the orthonormal eigen-

If

z(O) = _ olk zk with (_O_k2) 1/2 = 1

(1)_z = _k Zk '

then it is easy to show that

_2
_ % _(1) _ k

_k
_k- _(O) ' = /, _k _k---2'

and

y_ = z(1)T z(1) 1/2 _k >_ max [3k
k

than any other k k and _.Thus, if _(O) is nearer to kj 3

very small, then the iteration will magnify the component of

(1)
and make kk even more dominant in the expression for

is not

Z. in
--j

x(1)

Clearly

(69)

as long as the norm J_ is increasing, the computation is gain-

ing in accuracy. How large J_ can grow depends upon the accuracy to

which k(0) can approximate kk ; and the accuracy is limited by the

noise level of the computation which depends upon the computer word length

and the order and numerical nature of C . Thus one convergence criterion

stops the iteration when the norm J_ exceeds a large constant K chosen

to cut off the iteration just before the noise level is reached (16)

Because j_ grows very rapidly and overshoots a well chosen K in a

few iterations, this criterion is effective in preventing excessive

computation. If K is too large, then excess computation may occur

]5
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after the eigenvalue estimate runs out of digits in which to improve.

Consequently, a second convergence criterion is used, namely: stop the

iteration when IX(1) - x(O)I/X (I) is less than the suspected noise

level--again a matter of judgement.

Observe that if one defines

y(1) _ z(1)_ - D22 -I D21 -

then

c z(1) L z(1) +
_ = RDII _ RDI2 I- D22-I D2! L f(1)]

: _DilL£(1) + P_I2Z(I)

thus the linear system (67) is equivalent to

D22

RDI2

D21 L ]

RDII L - k(0) I

z(1)

z(1) o]=[
_z(°

and the Rayleigh quotient (68) takes the form

z(1)T [_DllL z(I)+ y(1)l_ RDI2 _ j.
k(1) _ -

z(1) T z (I)

(7o)

(71)

The modified form of the Wielandt inverse-iteration (70) and (71) is

used to compute the eigenvalues. The surface component of the eigen-

vector of (58) is recovered from the final z(O) via (64), that is,

Ii = L _(o) (72)
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the normal derivative on the surface is the solution to the system

(cf. (56) and (58))

f{n) IXS(A : lh ;

and the eigenmode is determined from (19) as

-i
h : a S

where G is the diagonal matrix whose entries are the values of

| i + f 21 i/2 at the mesh points on the free-surface.g
[ r ]

(73)

(74)

Solution of the Linear System and Reduction of Dimension. The linear

system (70) is solved by direct triangular decomposition, with inner

products accumulated in double precision, carried out in two stages.

Because the matrix D(X)in(58) is symmetric and diagonally dominant in

the upper left corner and (70) inherits these properties, a Cholesky

decomposition (15) can be carried through for the majority of the matrix

in case the mesh is strictly acute (this has also proved true in practice

for meshes that are not strictly acute). Moreover, because the right

side of (70) has a large initial component of zeros, the factorization

permits reducing the order of the matrix used in the Wielandt inverse-

iteration from M to 2N or 2N-I . The effect of the first stage

of the factorization is to consolidate all the information about the

shape of the tank which appears throughout D(X) into a matrix of much

smaller order.

]7
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Let z (0) and z(I) be, as before, vectors of values belonging to

mesh points on the free-surface; let _y(1) now be a vector of values

belonging to the first mesh line below and "parallel" to the free-sur-

face; and let x (I) be the vector of values belonging to the rest of

the mesh points. The partition of the linear system (70) induced by

this partition of the vectors is

D33 D32 0

D23 D22 D21 L

•x(1) 0
N

y(1)

o _12 RDll_- _(o)I ,_z(1) _z(°)

(75)

The four matrices in the upper left are a partition of the former D22 .

The nonzero entries in the new RD12 and D21 L are identical with

the nonzero entries in the previous matrices with the same names; con-

sequently the form of the Rayleigh quotient (71) is unaffected by the

new partition.
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The factorization of the matrix in (75) into the form

(DT)(DR)

where

DL=

DL33 0 0 1
DL23 I 0

0 0 I

and

DR=

DR33 DR32 0 ]

J0 W22 W21

0 WI2 WII

with

w22 = D2_ - (D_23)(DR32),

and

W21 = D21 L , WI2 = RDI2 ,

Wll = RDII L - k (0) I

can be accomplished without interchanges. Because the

(76)

x-component of

the right side of (75) is zero, the downsweep simply reproduces the

right side; that is, the solution of the equation

gives

_ u: [o,o,z(°)1_

__: [o,o,z(°)}

]9
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Because only the components y(1)
(1)

and z are needed to compute the

Rayleigh quotient and the new right side for the next iteration, the

upsweep, that is, the process of solving the equation

DR{ ,_Y(1),_z(1)1T = , (77)

can be truncated to a smaller system of order 2N or 2N-I, namely,

I W22 W21 ]
WI2 WII

x(l)

z(1)

0

z(O)

(78)

The matrix W22 contains all the information about the tank shape from

mesh lines below the first two. The matrix (78 ) can be viewed as a

finite-difference formulation of the free-surface boundary condition

(49) expressed in terms of the single variable, the potential _ , rather

than in terms of the two variables _ and _n used in the previous

representation (56). The fact that the potential drops off sharply

from the surface is reflected by the fact that the entries in W22

are several orders of magnitude smaller than the fixed entries in the

other three sub-matrices. This jump in magnitude seems to be the

principal source of numerical difficulty; it seems to be in part physical

and in part a result of the form of the congruence (63) used to avoid

multiplying a full matrix by k .

In the second stage of the direct triangular decomposition, factoring

and solving (78), partial pivoting (row interchanges) is necessary to

4O
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maintain accuracy (15) Because k (0) in WII

ization must be redone in each iterative step.

changes, this factor-

After the Wielandt inverse-iteration with (78) has converged, the full

upsweep (77) expands the potential restricted to the first two mesh

lines into the potential throughout the liquid.

The Initial Guesses. The rapidity with which the iteration converges

X(0) 0)
depends upon how good the initial guesses for and (0) = L-I (I

are. If some eigenvalue-vector pairs I kk' _,k I , say k = 1,2,and 4,

have been determined, then clearly (cf. (61) and (69)), (_)A should be

chosen to be B-orthogonal to the eigenvectors already determined; that

is, _i(0) is repeatedly replaced by the new approximation

- ( (79)°II

for all known eigenvectors _l,k

Consider the mixed boundary value problem

and

where h¢,'-

I i
- (@rr + --r_r + %zz )" --o _ = 0 in the liquid,+

r

= 0 on the wall, _ = 0 on the axis,
n

: _i h* on the free-surface
n g

(8o)

is an eigenmode from a related problem (the flat interface

LI
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case has been used in practice). The solution to (80) is a potential

that at least belongs to the right domain,_Ibeit with an incorrect

normal derivative on the free-surface,and should have a strong component

of the eigenfunction with the same index as h* . The finite-difference

form of (80) is

D22 D21

DI2 DII

(81)

where the notation of (58) is used and h* is a finite-difference

approximation to h* . Because only -% is needed to start the iteration

and because the first component on the right of (81) vanishes, only the

left and right factors of DII are needed to compute the guess. Thus

the complete Cholesky factorization of the matrix in (81) is carried

out--the first part is used in (76). In practice the vector AG -I h_

is restricted to the B-orthogonal complement of the space spanned by

the known eigenvectors by repeatedly applying (79). In addition, the

same procedure is used to guarantee that the solution lies in the same

space. These precautions have improved the guess z (0) = L -I_ -%

When external estimates of the eigenvalues are available, they may be

used as the guessed k (0) Two types of internal guesses are available

under input control. The first is the Rayleigh quotient derived from the

solution of (81), namely, with A and B defined as in (59),
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T

_(0) = _Z A __
T

The guess (82) when based on an h* from the flat interface case is

good for the first few eigenvalues; however, it tends to be high for

(82)

the later ones--in fact, so high that eigenvalue-vector pairs are skipped.

When this occurs, the program switches to the second type of guess to

recover the skipped pair.

The guessed eigenvector z(0) produced by repeatedly applying (79) has

no component in the space spanned by the known eigenvectors. Thus (61)

implies that the first Rayleigh quotient produced by the Wielandt

inverse iteration starting from a guess less than the first missing

eigenvalue will tend to be near the smallest eigenvalue not yet deter-

mined. As a temporary expedient when the distribution of eigenvalues

to be encountered was unknown, the second guess was taken as the zero

guess, X (0)= O. The zero guess proved so efficient in dealing with

skipped eigenvalues for problems with less than 50 mesh points on the

free-surface that it was never replaced. (Fortunately, few large pro-

blems have been needed.) In fact, many problems have been run with

the zero guess to minimize skipping.

Both guesses produce cases in which the norm _ (69) fails to grow

appreciably after a few iterations (the eventual convergence is likely

to be to an unwanted pair, one already determined or one with a high
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index). When such a case is detected, the program switches to the other

guess or stops if it has already been used. The strategies described

have sufficed to produce the first five pairs for all problems run to

completion.

Description of Techniques

Domain Definition. For given B , ®, and rw, the determination of the

equilibrium free-surface f , the solution to the two-point boundary

value problem (16) and (17), involves finding the value of X for which

,_ I_ cond±_ can be sat _s_athe differential equation and uot_1 boundary _*_ _ .....

Because the origin of the coordinate system lies at the vertex of the

free-surface (cf. (16)), the condition f(O) = 0 is implicit. Thus,

both f and f are known at r = 0 and the problem may be viewed
r

as a sequence of initial value problems in which k is to be determined

so that the boundary condition at r is also satisfied. (Because
w

is geometrically twice the curvature of f at r = 0 , a range of

acceptable values is known.)

To facilitate approximating the operator L on the free-surface, it is

convenient to introduce s , arc length on f , as the independent vari-

able and to replace (16) and (17) by a first order system

_f

_-_ = u

_u = (_ + _f- u/r) (i - u2) 112

8r = (i - U2) _2 I

(83)
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subject to the boundary conditions

u = 0 at r = 0 and u = K at r _ I
w

(8_)

with

K r cos _ - (i - r 2)I12"/ sin ®
w w

Integrating the initial value problem obtained by setting f(O) = 0

and guessing a X , say ko ' until u = K holds, say at So with

r° = r(So) , gives functions f(s, X) , u(s, X) , and r(s, X) that

satisfy ($3) and (84)--except that the second boundary condition holds

at r instead of at r Applying Newton's method to correct X
o w o

gives

= XO +

r - r
w o

I (au ar /
(85)

Geometrically this is equivalent to moving along the tangent to the

curve u(s, l) = K at (So, ko) to a point (s, X) at which

r(s, X) : r to first order. Differentiating (83) with respect to
w

and interchanging the order of differentiation yield a system that

can be integrated simultaneously with (83) to give the derivatives

necessary to evaluate (85), namely,

_f _u I

I
/

a ar u2 31/2 au

)

h5
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with the initial values

= 0 at s = 0 .

The numerical integration is carried out by a fourth-order Adams predictor-

corrector method with double precision accumulation of inner products,

double precision dependent variables, and single precision derivatives;

this choice simplifies programming the approximation to _. The starting

values are obtained from the approximate solution, valid for u2<<l,

and

f

U --

r -- s

(8'7)

where I° and II are the modified Bessel functions of the first kind

of orders zero and one. The parameter _ is first determined on a

rough mesh and then refined on the fine mesh used in approximating the

operator L. The iteration converges rapidly and yields a very accurate

description of the free-shape. The actual approximation of _ is

carried out in a final integration pass with the converged k in which

only the system (83) is integrated.

The equilibrium free-surface is located with respect to the tank by

transforming the origin from the vertex of the free-surface to the vertex

of the tank (the spatial coordinates can now be taken as positive). For

r = l, when the free-surface intersects the cylinde_ the transformation
w

is controlled in practice by specifying the volume. For r < l, whenw

the surface intersects the hemisphere, the transformation is determined
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by r itself. Thus, to vary the volume and/or the center depth, r
w w

must be varied. Because human judgement is needed between runs in pro-

ducing an adequate mesh, the definition of the domain can be controlled

by approximating r from working charts developed by Reynolds, et.al.(17)and
w

refining the approximation by hand to get the desired property in the

course of the mesh development.

Matrix Approximation for the Free-Surface Operator. To obtain both a

symmetrical matrix approximation and a form useful in approximating the

potential operator (47), it is convenient to put the differential equation

(49) into self-adjoint form and introduce arc length, s , along the

equilibrium free-surface as the independent variable. The result is

i

I+B_ (- r _ -_) + _g+ r 2 r_-Slg2 _-s _n

2
- Lo @ = 0 .

The boundary conditions (50) and either (51) or (52), which complete

the definition of the free-surface operator L (58), can be put in the

forms

and at r = r
w

= 0 at r = 0 (50)

- r
w _¢n i _g @n)-_ + -g

0 , if r = i and z > i ,
w w

- (_-r w cos A + r sin ® n_ , if r < iw w '

(89)
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where (rw,Zw) is the intersection of the tank wall, w , with f o

Let f be divided into N equal subintervals of length As by N + i

mesh-points indexed by the integers i = O, i, ..., N . Let q0j and

denote the approximatiorsto the potential and its normal derivative
_n,j

at the mesh points. Denote the value of other variables at a mesh point

by attaching the mesh-point index as a subscript and choose the indices

lies on the axis and sN = s is the length of f. Letnaturally: so w

the interval Itl't 2} contain a single mesh point s.
3

In general,

tI and t2 are the s-coordinates of the mid-points of two adjacent

mesh intervals; however, for j = N, tI is the mid-point of the mesh

interval ending at sN ,and t2 = sN .

Approximations of the form, for an arbitrary function W,

t2 t2

/ @n W ds " _n,j {I
tI

w as (90)

follow from the choice of the mesh; however, because @n tends

to vary linearly with r near the origin, better results are obtained

when the combination _n/r occurs in the integral by using an approxi-

mation of the form

t2 t2

(@n/r) W ds " (_n, jlrj)

tI t I

w ds (91)

48

LOCKHEED MISSILES & SPACE COMPANY



LMSC/A852007

NASA CR-5_700

Integrating (88) over [tl, t2} and using approximations similar to (90)

and (91) yield the approximate equation

ITBo_I- (r-_-s)t2 + _-_)t I

_t2 g rds + _ _t2ds
+ _ tl rj tl

(92)

[r r
g g

rds = 0 .

For j = N , the two terms to be evaluated at t2 = sN combine into

- w + -- _)t 2 mn,_ (93)

Because (93) approximates the left side of (89),the boundary condition

at r = r
w

of(89).

is satisfied accurately by replacing (93) by the right side

Set
t2

a. = f rds ,

J tI

t2
B f r g ds

DI, j - I+B
tI

D2 = As/(l+B_), and

gj _u) - (r u g 8u)
D3, j = I+---B_I(r u g _-s t 2 _ tII

(94 )

29

LOCKHEED MISSILES & SPACE COMPANY



L_C/A852007
NASA CR-54700

The final expression follows from

i 8g 8u
-_ _-_ = ug_-_ ,
g

which comes from noting that g = (l+fr2) I/2= (l-u2) -1/2 Because the

expressions (94 ) are evaluated in the final integration of the system

(83) with a mesh interval twenty to forty times smaller that As ,

they contribute a negligible amount to the total error.

and t2 are mid-points, the error in approximating theBecause tI

derivative by the difference quotient, for example

_-_-/t I = r(tl)I_n,j- _n,j_l ] /As , (95)

is O(As 2) The errors introduced by the approximations (90) and (91)

are of the same order. Consequently, the total truncation error intro-

duced by using the approximations (90) through (95) is O(As2)--an order

of magnitude smaller than the O(h) obtained for the potential equation

within the liquid.

Assembling the approximations (90) through (95) yields a difference

equation of the form

5O
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r(t 2 )

r(t 2) r(tI) D2
+ I_-B_ + DI, j + r.

J

r(tl)

- (l+B)As %,j-i

2

-_ aj _j - 0

(96)

as the approximation to (88) for j = 2, 3, ..., N-I . For j = i , (96)

is modified to accommodate the boundary condition (50) (see (95)) by

suppressing the term involving _n,o m O . For j = N , as a consequence

of (89) and (93), the difference equation takes the form

t

with K =

r(tl) D2DI, N 2rw(l+B_)As+ + --

]+ gN (r u g _ tl + K _n,N

_ 2 aN _N = 0

I 0 / , if r = I and z > i ,

w w

- {(1-rw2)l 2 c°s ® + rw sin ®}' if rw < l_

(97)

The contact angle ® occurs in (97) explicitly in the expression for

K when r < i and implicitly through the shape of the equilibrium
w

free-surface in the remaining variables. The care taken in the integra-

tion of f justifies fairing a smooth curve through the points (r, f)

with the slope f at r obtained from the computed value of gN = (l+f_)I/2"
r w

51
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The value of gN is good to at least four digits.

principal error in (97) comes from the size of &s

representation of the contact angle.

Consequently, the

and not from the

Assembling the difference equations (96) and (97) into a linear system

gives

2
% - A = 0. (56)

The matrix T , which approximates the free-surface operator L , is

tridiagonal, symmetric, irreducible, and nonpositive off the diagonal.

From (97) it is clear that T is positive on the diagonal and diagonally

dominant in the N-th row when K = 0 If both K and D3, j are not

too large, these properties hold in every row; and consequently T is

positive definite. In spite of the fact that all constructed T have

been positive definite, the "weasel word" "probably"(positive definite)

is used to describe T because no apriori estimate is available for

the relative magnitude of the terms which sum to the diagonal of T .

The matrix T is replaced in the program by the related matrices

S, L, and R, defined by

i A-I A-I
S = _ T and S = LR . (98)
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Mesh Generation. Four numbers are associated with each point in the

mesh, two logical and two physical coordinates. The logical coordinates

are integers numbering the mesh lines in a rectangular coordinate system

[ K, L} imposed on an equilateral triangular grid by taking one set of

parallel lines as the lines L = constant and taking the "perpendicular"

broken lines as the lines K = constant. Figure 2 is the logical diagram

for the computing mesh, physical cross-section of D , shown in Figure 3;

the labeling of the boundaries of the heavily lined trapezoid in the

former shows how they map into the latter;the logical coordinates

IK, L] of some points in Figure 2 are given along with the physical

coordinates (r, z) of the corresponding points in Figure 3.

The logical diagram is a KMAX by LMAX rectangle in the first quadrant

to which corresponds an RMAXby ZMAXphysical rectangle. The regions

lO1 through 105 and their physical images are successively subtracted

from the basic rectangles to leave the interior and boundaries of the

heavily lined regions as the working logical domain and computing mesh.

The logical and physical coordinates of each point on the heavily lined

boundaries are explicitly constructed in the program. The physical

coordinates of the equilibrium free-surface are associated with the

logical coordinates of the lower boundary of the region lO1. Because

the boundary condition _(0) = 0 holds, there is actually one more

mesh point on the free-surface than the nominal number. The physical
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height of region 104 and the physical width of region 105 is a small

-iO
number, say i0 , so that the lines K = i and L = i effectively

map into zero.

Because the contact angle ® is small, only one triangle should be

stuffed into its vertex; that is, the diagram of Figure 2 should have

the form shown. Thus, the logical coordinates of the points on the

cylinder wall are known if the L coordinate of the point that maps

into the juncture of the cylinder and the hemisphere is specified.

The physical coordinates of the end-points of the wetted part of the

cylinder are also known, (i, f(1)) and (i, i) The first mesh

space adjacent to the cylinder is a control segment, AS 102: if

O < AS 102 < f(1) - i , the k mesh spaces along the cylinder form

a geometric series with k terms which has AS 102 as first term

and sums to f(1) - i ; if AS 102 = 0 , the length of the last mesh

interval on the free-surface is used as the first term of the geometric

series; and if AS 102 exceeds the length of the wetted cylinder, then

k equal mesh intervals are used. Generally AS 102 has been chosen

to be slightly larger than As , the free-surface mesh spacing, and the

number of points on the wetted cylinder has been chosen so that the

mesh spacing increases slowly but observably as in Figure 3.

One other form of control over the mesh spacing on the wetted cylinder

is available: the level of the free-surface may be raised or lowered
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slightly. For example in the case illustrated in Figures 2 and 3 ,

when the center depth, h° , was precisly l, five mesh spaces gave

obtuse triangles at the free-surface and four mesh spaces gave obtuse

triangles along the wall. Clearly using ho= 0.98 and four mesh spaces

yields anacceptable result. A better mesh could have been obtained

were variable mesh spacing available along the free-surface.

The control for the mesh spacing on the inner boundary of region 105

is analogous to that for region 102. Observe in Figure 3 that alternate

triangles along the axis are obtuse. This occurs in all meshes and

is characteristic of points where only two triangles meet on a boundary.

However, the potential is small near the axis-because the boundary con-

dition (50) holds so that obtuseness at the axis is not serious. To

eliminate this, a major re-examination of the internal workings of the

mesh generator would be necessary.

The hemisphere in Figure 3 is the image of two segments of the heavy

boundary in Figure 2. The length of the image of the slanting heavy

line is prescribed by giving F, the ratio of its length to the total

length of the wetted part of the hemisphere. The control of the mesh

spacing for region 103 follows the pattern used for region 102 except

that, when AS 103 = 0 , the last mesh spacing from region 102 is

used as the first in region 103. The control for region 104 is analogous

to that for region 103.
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Obtuse triangles occur most frequently in the neighborhood of the point

on the hemisphere where only two triangles meet. Frequently, even with

repeated trials, it has been impossible to eliminate such obtuseness--

especially for cases with small fill levels.

When the free-surface intersects the hemisphere, the diagram of Figure 2

is modified by eliminating the region 102, by reducing LMAX considerably

and by increasing KMAX.

Because the free-surface operator is approximated on a mesh much finer

than that exhibited in Figures 3 and 4, what seems to be the contact

angle is a gross over-estimate of the effective value used in forming

the difference equation (97). As pointed out in the preceding section,

the mesh points on the equilibrium free-surface, f , give its shape

very accurately and the value of gN & sec(_/2 - ®) is a good measure

of the overall accuracy of the determination of f . For example, in

Figure 3, the seeming contact angle measures about 15 degrees; clearly,

the curve faired through the mesh points on f leads to a much smaller

estimate of the effective contact angle; and in fact, gN = 11"4766 has

four digits in common with i1.4737, the value of sec(w/2 - ®) for

® = 5 degrees. In addition, the rise height at the wall in a cylinder

of a radius i with Bond number 50 would be 0.183 were ® = 15 degrees--

not 0.203, the value for ® = 5 degrees, as in Figure 3. The situation

for Figure 4 is less misleading. The seeming contact angle measures

about 6 degrees; and gN : 11'4728 has five digits of accuracy.
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Although this discussion has emphasized the difficulty of obtaining good

meshes, Figures 3 and 4 demonstrate that the procedures which have been

explored can yield remarkably good meshes for difficult domains.

The mapping of the mesh points in the interior region of the logical dia-

gram into the physical cross-section of D is constructed by solving

iteratively a pair of coupled, non-linear elliptic partial differential

equations. The input checking and expansion routines as well as the

mapping routine are virtually in the form described by Winslow (9'I0)

His plotting and matrix generation routines have been heavily modified,

although the indexing structure is retained.

Matrix Approximation for the Potential Operator. In developing the

restriction of the Wielandt inverse-iteration, the formulation of the

sub-matrices in (58), (75), and (81) was sketched earlier only for a

mesh consisting entirely of acute triangles. Here the description is

completed by describing the approximations for obtuse triangles and

sketching the assembly of the computing matrices.

Because the perpendicular bisectors intersect outside an obtuse triangle

and the medians intersect %rithin the triangle at the centroid, the

argument that leads to the acute triangle approximation may be imitated

for obtuse triangles with the line segments connecting the mid points

of the sides to the centroid as the replacement for the segments of the
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perpendicular bisectors. For obtuse triangles, assuming the potential

to be linear within a mesh triangle gives an approximation consistent

along sides of the triangle with that used for acute triangles. When

obtuse triangles occur in the mesh, the mesh region that surrounds an

interior mesh point is a dodecagon bounded by segments of perpendicular

bisectors and medians.

Let P. , i : i, 2, 3 be the vertices of the triangle with indices
I

increasing with positive rotation. At P'l ' let _i be the approximate

potential and r. the r-coordinate. Let s. be the vector from P.
i i 1

to Pi+l and m.l be the vector from the mid point, si/2_ , to the

centroid, i : i, 2, 3 (mod 3).

As in the acute case, the derivation of the difference equations approxi-

mating (47) is based upon replacing the integral of the Laplacian of

@ over a mesh region by the integral of the exterior normal derivative

over the boundary. Here the relevant part of the boundary is the

frustum of the cone generated by rotating mI about the center line,

r = 0 . The contribution from mI to the integral over the boundary

of a region containing PI in its interior is, with the factor

divided out,

(Cl2 + Cl3) _l - Cl2 _2 - Cl3 _3 (99)
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where

and

where

Cl2 = (2s3 " s3 + Sl " ss) (ql2 + c)/12A

c13 = (2Sl " s3 + Sl " Sl) (q12 + c)/12A

ql2 = (rl + r2)/2 ' c = (rI + r2 + r3)/3 ,

A is the area of the triangle PIP2P 3 , and sI ' s3 is the inner

product of the two vectors. When m1 is viewed from P2 ' the

direction of the exterior normal changes; thus the contribution from

m 1 to the integral over the boundary of a region with P2 in its

interior is

cl2 + Cl3% - (Cl2+ Cl3) •

(i00)

(i01)

Because the quadrilateral bounded by mI and m3 with vertex at PI

has area A/3 , the contributions from PI to the approximation for

the coefficient of the term + $/r 2 in (47) is

A I : 2A/3r I

(The form of (102) is chosen to reflect the linear variation of

with r near r = 0 .) The contributions of an obtuse mesh triangle

to the coefficients of the difference equations can be obtained from a

set of nine numbers, c12 , c13 , A1, and the six others obtained by

permuting indices cyclicly.

(102)
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Let

pendicular bisectors. The analogue to

the form

c12 _i - c12 _2

Pi be the vector from si/2 to the intersection of the per-

(99) for an acute triangle has

(lO3)

where c12

cone generated by rotating Pl about the axis times the length of

The analogue of (102) is an AI equal to twice the area of the

quadrilateral bounded by Pl and

by rI . Although only c12 and

of an acute triangle, setting c13

coding to assemble the coefficients of the difference equation without

is the lateral area divided by w of the frustum of the

sI •

P3 with vertex at PI divided

AI need be associated with a vertex

to zero permits using the same

testing for triangle type.

The mesh points and the corresponding components of the approximate

potential _ are indexed from the slanting line in Figure 2 toward

the axis; the points on the axis do not belong to the computing mesh

because the value of _ is known there (50) and are not indexed; the

indexing on line L + i continues that on L . A mesh point on the

line L has in general two neighbors on the same line, two on the

line below, L - i, and two on the line above, L + i . See the detail

in Figure 2 at L = ii. With this indexing the matrix of the linear

system approximating (47) becomes block-tridiagonal. The center block

contains the coefficients of the approximate potentials on the line L;
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the left and right blocks each have two non-zero diagonals, the coef-

ficients of the potentials on the lines L-1 and L+l . The number

of points on a line is alternately the same and one greater than the

number on the preceding line. Thus the order of the diagonal blocks

and the left and right band widths, measured from the diagonal to the

outer non-zero diagonal, grow in steps with L •

For each mesh region, the difference equation approximating (47) is a

weighted sum of the potentials at the seven points of the star formed

by the mesh point within the region and its six neighbors. The coef-

ficients for the external points of the star are sums of Cl2 , Cl3 ,

etc.; the coefficient for the central point is a sum of Cl2 , Cl3 ,

etc. plus a sum of A1, etc. The rule for forming the sums of the c's

is to add the analogues of (99) and (103) as encountered in traversing

the dodecagon in the positive direction with the signs reversed when a

Pi or m i is traversed against its direction (cf. (lO1)). The rule

for the sum of A's is: for each triangle meeting the center of the

star add to the center coefficient the A belonging to the vertex

lying on the central mesh point.

The program to assemble the potential matrices is based upon the

rectangular [K, L] indexing used by Winslow (9). All coefficients

(nine for each triangle) for the triangles in the mesh row between the

lines L and L+l are computed at one time. To facilitate applying
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zero normal derivative boundary conditions (48), the coefficients which

lie outside the liquid but occur in stars of boundary points are set

to zero. Two matrix stores are used in turn and the rules described above

are split into two parts. First the right half of the matrix for the

line L is completed into one store;and then the left half of the matrix for

the line L+I is computed into the other store.

The zero value of the potential on the axis (54 ) is dealt with by

setting to zero the coefficients which correspond to points that lie

at intersections of stars with the axis. The boundary condition (48),

zero normal derivative on the wall, is automatically accommodated for

the line L=I by setting the matrix store to zero and computing only

the right half of the matrix; for other points on the wall, the setting

of triangle coefficients zero outside the liquid enforces the boundary

condition. Because the normal derivative on the free-surface is always

accounted for by an explicit element, the matrix - XS -I in (55 ) and

AG -I h* in (81), a zero normal derivative boundary condition is implicit

in the definition DII . Consequently, only the left half of the matrix

for the line LMAX-I, the free-surface, need be computed.

It is easy to verify that the matrices just described have the properties

ascribed to D(X) in the discussion subsequent to (55).
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The identification of the elements of (75) with the matrices just

described is

(i) DI2 and DII are the left and diagonal blocks for

L : LMAX - i,

(2) D23 , D22 , and D21 are the three blocks for L = LMAX - 2,

(3) D32 is the right block for L = LMAX - 3 , and

(4) D33 is the remainder of the matrix.

To see that the approximations (99) and (lO1) do yiel_ in genera_ asym-

metric matrices, consider an isolated obtuse triangle among acute tri-

angles (Figure 3 contains an example at the mesh point on the hemisphere

where only two triangles meet.). Because all neighbdring triangles are

acute, any asymmetry in the matrix must come from the contribution from

the triangle PIP2P 3. Suppose the mesh points are ordered so that P1

preceeds P2 on one mesh line. The matrix of contributions from mI to

the diagonal block of the matrix belonging to the line P1 and P2 is

[ (c12 + c13) - c12 ] (104)

(-c12 - c13 ) c12 ,

which is asymmetric unless c13 = 0 . The exceptional case occurs if

and only if the triangle is equilateral.
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Matrix Manipulation. The program is designed to admit up to $0 points on

the free-surface and up to 3000 components in the approximate potential.

The number of mesh lines is restricted by the allocation of drum storage

areas. In the runs reported here, the number of points on the free-

surface varies from 25 to 65 and the number of mesh lines from 62 to 6

with fewer lines for the larger number of points.

The potential matrix is stored by block-rows corresponding to mesh lines.

Each block-row can be compressed into a seven column array. Eight columns

are needed to store the derived block-rows I D32' D22' D21 L1 and

I RD21, RDII L I that occur in (75).

To carry out the modified Wielandt inverse-iteration restricted to the top

two mesh lines, the matrix W of the linear system (78) is needed; and

to carry out the full upsweep (77) the matrix {DR33, DR32 I (76) is

needed. To allow for the possibility of improving the eigenvector

iteratively, it is desireable to retain the matrices DL33 and DI_3.

Ivloreover, in solving the system ($i), the matrices I DL2_, DL22 I ,

IDL21 , DLIII , DRI1 , and IDR , DR211 are used. Here the notation
22

of (76) is extended naturally.

The submatrices of the left and right factors of the potential matrix

are stored by rows. The number of nonzero entries in each row is the

left and right band width of the block-row to which the row belongs.
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To compress these matrices the rows are stored end to end in groups

separated by indices indicating the band width and the number of rows

with this width. The factorization is carried out block-row by block-

row. The results continue to be stored in left and right stores until

the storage of the upcoming group of rows would result in more than

6562 entries in the store. At this point the store is emptied as a

record into drum and/or tape.

The rows of the left factor are stored in natural order and, within

each row, the entries are stored from left to right, from outer to

central diagonal. With this order the left rows occur as used in the

downsweeps and the smaller entries lead so that they can be used first

in forming inner products. Because the right factors are used in

upsweeps, in which the first row of the matrix is used last, the right

rows are stored in reverse order. The entries are stored from right to

left. The storage area assigned to right rows is filled from the

bottom upward. Any initial zeros are eliminated in writing the record

on drum. After all the factorization is complete, the order of the

records that form [ DR33 , D32 ] is reversed as the records are written

onto tape.

The matrix W , which may have up to 25,760 entries, is also constructed,

partitioned into blocks 40 columns wide, and written on tape.
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Clearly, the problem involves a large number of matrices, some of

large order, that must be introduced into core storage in various

sequences. Thus the programming problem for the UNIVAC 1108 is to

devise a method to move a large number of matrices efficiently from

drum storage to core in such a way that no time is lost in waiting for

information. A subsidiary problem is to be able to reload the drum

when it is desired to determine additional eigenvalue-vector pairs.

The latter problem is solved by creating a restart tape which , as

a matter of precaution, contains at the end of each major segment of the

program, and also after determination of each eigenvalue-veetor pair,

all the output (future input) so far obtained. A drum loading routine,

which is buffered to run at tape speed, can reload the drums at

restart or, to facilitate independent running of major segments, at

the beginning of each program segment.

To guarantee that the record read from tape or from drum is the one

required, each record is provided with an eight word header descriptive

of the contents of the record. The header is checked by the drum

loading program and by the main programs before each use of the informa-

tion.

The primary programming problem is solved by using a large core area

as free storage. The Wielandt inverse-iteration program falls into

four sections:
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(i) computing the guess,

(2) carrying out the modified Wielandt inverse-iteration restricted

to the two top lines,

(3) expanding the restricted potential throughout the tank (and

iteratively improving the eigenvector, if possible), and

(_) presenting the output in tabular form.

To each section of the program corresponds a list of matrices in the

order used.(Here output vectors, eigenmode, full tank potential, and

eigenvector, are considered as matrices.)

A family of drum reading and matrix checking programs keep the free

storage as full of information as possible. At the beginning of each

list, the drum reading program fills the available space in the free

store by using a UNIVAC ll08 program (NTRAN) to stack drum read orders.

These orders are executed as soon as possible via the interrupt features

of the UNIVAC ll08. As the main program needs information, it checks

that the next unused area of the free store contains the desired informa-

tion and, if necessary, holds up until it is available. As the main

program finishes with the information in an area, it releases that

area to the drum read program. The latter uses NTRAN to fill the

released area with new information or waits until the released area

grows large enough to accommodate the next record. The reading of new

lists is initiated by the main program as early as possible to keep
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the free store full. Running times of from 1 1/2 to 4 1/2 minutes

for eight eigenvalue-vector pairs show that the procedure just described

is reasonably effective. For a problem in which the W matrix had

17,030 entries considerable waiting occurred.

The Eigenvalue-vector Iteration. The efficacy of the modified Wielandt

inverse-iteration in determining the eigenvalues can be judged from

the size of the norm _ (69) finally attained in the iteration. The

relevant inequality,

l_ _ Xk - _(0) ,

is in the wrong direction, that is, it bounds the computed eigenvalue

_(0) away from Xk , the exact eigenvalue of the approximate matrix

used in the computation. Moreover, what is wanted is a comparison of

_(0) with the exact eigenvalue of the continuous problem. Neverthe-

less i/_ does indicate the general level of accuracy attained.

Better error estimates would be appropriate, were the y_'s larger.

4
For the runs reported here,_A_ is generally of the order i0 or

greater except for problems with center depth h = 0.i • The valueo

of Y_ within a run varies from eigenvalue to eigenvalue but tends to

remain at the same level or to decrease slowly with increasing index.

For Bond numbers B _ i0 and h _ 0.5 , an _ of the order 105
o

is common.
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As _ decreases toward 0 , _ tends to decrease slowly:

for h = 3
o

, from 105 to 104 ;

for h =0.I , from 103 to 102
O

As h ° decreases, _tends to decrease very slowly at firstjand then has

= 0.25 and h = 0.i •a rapid decrease between h ° o "

for _= 50 , from 105 to 103 ;

for B= 0
from 104 to 102 .

For h = 001 , _ is of the order i0 J for B > 5.
O

The domains for h = 0. I are long and narrow compared with the others
O

(cf. Figures 3 and 4). In order to get what seems to be an adequate

number of mesh lines between the free surface and the tank wall so

that the potential is represented, a fine mesh must be used on the

free-surface. But the number of eigenvalues of the approximation

matrix (65) is equal to the number of mesh points on the free-surface.

Because (65) is an approximation to a continuous problem with an infinity

of eigenvalues, the range of the eigenvalues of the approximate problem

increases as the number of mesh points increases. Consequently, the

matrix becomes more ill-conditioned as the number of mesh points

increases. It is a fact of life that ill-conditioned linear systems

are difficult to solve.
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_,:o cases for B_= 0 and @ : 5 degrees, h :0.25 and h = 0.5 ,O O

w[th 50 mesh points on the free-surface, rather than the 25 used for

the runs included in the tables, give values of _ of the order 102

This suggests that the difficulty lies in the large number of mesh

points rather than with the inadequacy of the mesh.

Eigenvectors computed by the wielandt inverse iteration should have

roughly half the number of correct digits that the corresponding eigen-

values have (cf. 69) Thus, in general, the eigenvectors should

have about two digits of accuracy, sometimes more, and probably o_ly

one for the smaller values of B when h = 0. i.
o

When the free-surface is flat and the tank very deep, the eigenfunctions

are proportional to Jl(lk r) where Xk is the k-th zero of Jl_(r).

The computed eigenvectors for the cases B : 0 and B = 50 with

a flat surface, G = 0 degrees, and h = 3 , even with 40 mesh
O

points on the free-surface, reproduce the shape of Jl(lk r) _{ith

unexpected accuracy--at least one more digit than the observed accuracy

of the corresponding eigenvalue indicates. For these two cases, the

first eigenvector had at least three digits correct, if not four; the

second eigenvector had t_o to three digits correct; and the fifth had

one or two correct.
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For the flat surface case with B = 0 , the calculated Fourier coef-

ficients Dk (23) compare well with the theoretical values: four digits

of accuracy for k = 1 , three digits for k = 2 and 3 , and t-o digits

for 4 _ k g 9 • Thus although the first eigenvector is likely to be

more accurate than the succeeding ones, the latter yield adequate

Fourier coefficients. However, it is doubtful if the higher eigenvectors

are sufficiently accurate to yield adequate results when extended to

a potential throughout the tank.

Integration Techniques. An easily calculable approximation for the

Fourier coefficient

rw

/O hk r2dr

Dk = r (23)
W

_O @k hk rdr

can be derived by observing that

= _k Skn

holds. One consequence of (18) is that the product Dk _k

is independent of the normalization of _k "

Therefore, let % be normalized so that it is consistent with the

approximate potential _ .

Because the integrals in (23) are to be evaluated on the equilibrium

free-surface, it is appropriate to introduce arc length on the free-
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surface as the variable of integration (ds = gdr) and to approximate

the integrals on the same mesh that was used in the approximation of

the free-surface operator. Thus, the denominator can be written as

r s

/ w @h r dr :-i / w @
O CO O n

r ds (105)

i _ ft2 @ r ds ,
= - _nco

J tI

where Sw = sN , the length of the meridian of the equilibrium free-

surface. Making two approximations of the form (90), using (94), (73),

and (60) give an approximation to the denominator in the form

t2

co

J t I

r ds

= _i , _oj(aj _On, j) = _ _T(A _n )
co j

(106)

mTs-i
2co- .T = 2--_

The last step follows because _ is a B-orthonormal vector.

the continuous potential should be normalized so that

r
w

_ hr dr =
" 2

o

to have the normalization of the computing potential.)

(Thus,

(107)
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The analogue to (106) for the numerator is

r

f w hr2 dr "= 1- r(A_n )
O CO --

_ S-1= _ r _ (108)

where r

surface.

is the vector of r-values at the mesh points on the fre_

Hence, (106) and (108) imply that

-1

Dk'- rs (109)

is the computing approximation for the Fourier coefficients.

Suppressing the index k , introducing arc length as the variable of

integration, transforming as in (105), and approximating as in (106)

leads to the following approximate value for the integral V

occurring in (42) and (43):

S
W

_ _n r ds & R (A Rn ) = _/2 .

In setting up a set of weights to approximate the integrals (39) and

(40) which occur in the definitions of the lateral force and the

moment, the problem is that the potential and the coordinates of the

wall are known only at the mesh points. Moreover, the linear distance

between adjacent mesh points is computed in generating the potential

matrix.

(llO)

These facts suggest approximating the entire integral by linear
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interpolation at the mid-point of the chord between two adjacent mesh

points. Let _i' _j' and _k be the potential values at three con-

secutive mesh points on the wall. Because the mean value of the

potential is used in each of the two intervals, the approximations have

the forms, in terms of the coefficients

V_i + V_j and W_j + W_k .

Hence, the weight assigned to _j is V + W .

it is desirable to make the replacement

V and W ,

For computing purposes,

sin _ = r
W

Forced Motion Analysis. For convenience these calculations are carried

out by a separate program. The main program provides punched card

output to serve as input to this program, namely a set of cards con-

2

raining k , the index of the eigenvalue, ho, cos ® , B , _ k ' Dk '

and gN(_/_n)w , the evaluation carried out at the intersection of

the wall and the equilibrium free-surface. The last quantity is

derived from the computed value of _n at the wall rather than by

finite-difference techniques, which badly underestimate _n because

the potential drops off very rapidly from the surface.

The programming to determine the vertical rise height in response to

sinusoidal, square wave, and periodic pulse lateral perturbing accelera-

tion is a straight forward exercise in evaluating the series (29),

(30), and (31)
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Recommendations. The principal difficulty with the problem is the

unresolved conflict between the desire to reduce the truncation error

by increasing the number of mesh points on the surface and the fact

that more points make the linear system harder to solve. Two

courses are open, direct attack or palliatives.

The most promising direct approaches are:

(1) to solve the linear system (78) by orthogonal triangularization

and

(2) to double the precision of the arithmetic used.

Factoring the matrix of a linear system into the product of an ortho-

gonal and a right triangular matrix tends to yield more accurate solu-

tions and sometimes produces solutions that cannot be obtained by

other methods. Direct triangular decomposition with partial pivoting

was originally chosen because it is a standard, good method with familar

coding. Doubling the precision is not prohibitive because all inner

products are now accumulated using machine language double precision.

The penalty is considerable reprogramming and a decrease in the size

of problem that can be run.

The palliatives are:

(3) to introduce a variable mesh on the free-surface and

(4) to attempt to condition the matrix.
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Clearly a variable mesh would allow the truncation error to be reduced

in important regions while the number of mesh points remained unchanged.

Ho_ever, the existence of small mesh spacings in a problem tends to

make the l_near system more difficult to solve, so there is a penalty.

An added advantage is that it will facilitate the development of

suitable meshes. The problem of conditioning a matrix, that is, finding

a transformation that makes a linear system easier to solve, is an

active subject of research for many numerical analysts today. The

probability of finding a good transformation is small for this problem.

Two directions in which the program, as a program, might be improved are:

(5) to make the mesh generation routine easier to use and

(6) to improve the guesses, in particular the strategy for dealing

with skipped eigenvalues.

Because of the amount of human time consumed in developing suitable

meshes, any :improvement of the mesh generation would

increase the program's usefulness.

Improvement of the guesses clearly saves computer time. The original

design of using the actual solution of a nearby problem in constructing

the guess might save significant running time.
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RESULTS AND CONCLUSIONS

The Method. The problem of low gravity sloshing, where surface tension forces

may dominate gravitational forces, has previously been investigated by

approximate methods for right circular cylinders with flat bottoms

(or infinite depth) and by experimental techniques. (2'3) This study is a

first attempt to survey the problem by purely numerical (finite-difference)

methods using a digital computers

The highly curved equilibrium free-surface characterized by large departures

from the horizontal plane is accurately represented by numerical methods--

in contrast to the approximate representations used by others!3)Restriction

of the tank to right circular cylinders is not necessary. Here, in fact, the

tank has a hemispherical bottom topped by a right circular cylinder--in

principle, any reasonable tank shape can be studied. The assumption of a

large depth is unnecessary. The physical difficulties, met in experiments,

in obtaining proper combinations of liquids, dimensions, and tank materials

to give desired Bond numbers and contact angles can be eliminated through

numerical computation. Consequently, both surveys over wide parameter ranges

and detailed examination of particular cases become feasible. The basic

restriction inherent in the finite-difference approximation is that the

contact angle be nonzero (although it can be quite small).
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The demonstration of the utility of numerical calculation as a tool in

surveying small amplitude motion of liquids under reduced gravity conditions

is a major result of this work. The magnitude of the program to do this is

indicated by the space needed to give a nonsuperficial, yet not too detailed,

description in the preceding section of this report. In spite of its mag-

nitude, the program runs fast enough to be a survey tool. The principal

outputs from the numerical computation are

2

i. The normal mode eigenvalues _k ;

2. The normal mode eigenfunctions _k (both throughout the liquid

and restricted to the equilibrium surface);

3. The eigenmodes, hk, the shape of the perturbed surface in the kth

mode; and

4. The Fourier coefficients Dk in the expansion r =_Dk@ k .

Reducing the mass of results to engineering data, even for a single case, is

a task requiring iteration among numerical analysts, programmers, and users.

Consequently, even for the restricted set of calculations presented here,

only a representative selection of the results accumulated can be presented.

In principle, the computations of the response to lateral perturbations is

an exercise in evaluating Fourier series (see, for example, (29) - (31)).

For sinusoidal perturbations no difficulty in interpreting the analysis is

encountered. However, the calculations for square wave and periodic pulsing

perturbation suggest that an attempt at a general analysis may be more

misleading than helpful. Consequently, the program to aid an engineer in
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carrying out a detailed analysis of laterally perturbed motion is as yet

in a rudimentary stage. At present, cases needing detail in engineering

practice should be investigated individually with output tailored to the

judgements to be made.

For routine engineering work, a mechanical analog, an equivalent spring-mass

oscillator, may suffice; and therefore, mechanical analog parameters for the

fundamental mode are also discussed.

The Present Survey. The data reported here is basicsD_ly a survey of small

amplitude linearized sloshing over a range of Bond numbers and fill depths

with a fixed contact angle of 5 degrees. This value is significantly smaller

than that used in previous calculations. (2) The choice of 5 degrees is a

compromise between (1) the desire to obtain results representative of the

behavior of fluids with small contact angles and (2) the necessity to avoid

numerical difficulties encountered in calculations within very thin wedges.

The consistency of the results reported suggests that computations for

contact angles less than 5 degrees may be successful. As pointed out earlier

(page 70), the results for large depth with a flat interface agree with

calculations by classical methods.

The axial Bond numbers B = pg_ro2/q used in the survey range from 0 to 50.

Depths, ho, range from O.1 to 3, measured along the center line between

the free-surface and the hemispherical tank bottom. Figures3 and 4 give
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sample cross-sections of the liquid in equilibrium. For large h and
o

small B , the cross-section resembles a domain bounded by two parallel

straight lines and two nearly parallel circles (see Figure i); for small

h° and large B , the equilibrium domain resembles a puddle in the bottom

of the hemisphere. The range of parameters covers both the cases in which

large depth analysis is applicable (2) and those in which the shape of the

tank bottom may have a significant, if not dominant, effect.

P

The Eigenvalues e_. The variation of the first mode (fundamental) eigen-

2
value e I as a function of Bond number B_ and liquid depth h° is shown

2

in Figure 5. For all values of B , e I is an increasing function of ho ;

for depths exceeding about 1 1/2 tank radii the hemispherical tankand,

bottom ceases to have a significant effect. For depths greater than about

2 In contrast
3/4 of the tank radius, e I is a decreasing function of B .

to other reports, (3) 2
_i for large depth and finite B decreases mono-

tonically to 1.$41, the value for B = _. For small depths, _i 2 first

decreases and then increases with B . This behavior is consistent with

the fact that e! 2 = i for small depth with B = _''!18)

2

Table I lists the first five eigenvalues _k for all cases in the survey.

Those in which the liquid wets the cylinder are above the dashed lines;

those in which the liquid lies within the hemisphere are below. For B =0

2
all cases wet the cylinder and all _k are increasing functions of depth.

For B_ i , _42 and e52 decrease and then increase with depth. For B _ 2

2
all higher eigenvalues _k ' k > i, show a minimum as a function of depth.

8O
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Because the minimum occurs near the dashed line which separates the two

geometric domains, the higher eigenvalues appear to be decreasing functions

of depth when the liquid lies within the hemisphere and increasing functions

when the liquid wets the cylinder. Table I also shows that the higher

eigenvalues tend to assume their "asymptotic", large-depth values at smaller

depths than does the fundamental.

Dimensional sloshing frequencies _k can be obtained from the values of

Table I via the relation

= °°k ((l+Ba) _/Pro3 ) 1/2 .

For convenience in calculation, the equilibrium depth along the axis, h° ,

has been used in place of the liquid volume as the parameter in this study.

Because volume is more frequently known than depth, Figure 6, which gives

liquid depth as a function of volume for selected B , facilitates using

the results in engineering calculations.

The Fundamental Eigenmode h1. Because the emphasis in this survey is on

results representative of the behavior of liquids with small contact angles,

a detailed study of the dependence of eigenvalues and eigenmodes on contact

angle ® is not presented. However, the results of some test cases, con-

tact angles of 90 and 60 degrees with B_ = 0 and ho = 3 , show the

dramatic effect of varying the contact angle: The eigenmode h I changes

its shape--from concave to generally convex--as the contact angle is decreased
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from 90 to 5 degrees. This is shown in Figure 7 (where the three eigenmodes

have been normalized to a common value at r = i). The first eigenmode

becomes sharply peaked near the wall as the contact angle is reduced. However,

its derivative must be zero at r = i to satisfy the fixed contact angle

condition, which is built into the calculations. The fundamental eigenvalues

2
e I for these three cases are 6.24 for ® = 90 degrees, 5.04 for ® = 60

degrees, and 2.81 for ® = 5 degrees; the first two values agree well with

earlier calculations by a different method. (2)

The dependence of the eigenmode shape on Bond number is significant at small

contact angles. For ® = 5 degrees and h = 3 , large depth, this is shown
o

in Figure 8 for the fundamental eigenmode hI . (Again the three curves

are normalized to a common value at r = i.) Although an examination of

Table I would suggest that B = 50 is close to the asymptotic range in

so far as the first eigenvalue is concerned, Figure 8 indicates that this

is not the case for eigenmodes. Albeit the fundamental for B = 50 has

acquired thoughout most of the tank the concave shape characteristic of very

large Bond numbers, it still retains a convex region with a peak near the

wall. By contrast, the eigenmodes for ® = 90 degrees do not vary with

B provided the liquid depth is large.

Variation of the liquid depth for a given Bond number has surprisingly

little effect upon the shape of the fundamental eigenmode under low gravity

conditions. This is shown for the zero gravity case in Figure 9. Again by

contrast, variation of depth when B =co produces significant change in

the eigenmode shapes. (18)
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Response to Lateral Perturbations. Most engineering interest centers on

the vertical rise of the liquid at the wall when lateral accelerations

perturb the equilibrium. For a sinusoidal perturbation of amplitude
T

and frequency _o' say B = B sin _ t , the maximum excursion at the
T T O

wall occurs at t = ,_/2°° . For this t , (29) specializes to

^

h r=r I_-B_ k=l l-(_o/_k )2 _k 2

W

where Dk , defined by (23), is the Fourier coefficient in the expansion

r = Z Dk _k and

(lll)

8¢k ]Yk (r) = _k hk(r) : (l+fr 2)1/2 n_ z:f(r) " (ll2)

Because

Dk Yk(rw)/a)k2 : (Dk/%) , (ll3)

(iii) is a linear combination of kth mode responses at the wall. For all

cases in the survey, the quantities needed to evaluate (lll) are tabulated

2

for the first five normal modes: _k in Table I, Dk in Table IIa, and

 k(rw) inTablerib.

The first five eigenmodes, hk(r) , for B : 0 and h° : 1/4 are plotted

in Figure lO. The vertical scale is compressed compared to the horizontal

scale to accommodate the common normalization of the computations and

Table IIb. The characteristics of the higher eigenmodes (k m 2) are
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(i) their oscillatory nature; (2) the existence of a small region near the

wall in which the magnitude is much larger than elsewhere in the tank; and

(3) the decrease in size of this small region with k .

Examination of Table lla and extrapolation of the trend in Figure i0 sug-

gests that the Dk do eventually alternate in sign as k increases. The

negative signs of D2 for large B seem to continue a decreasing trend

established for smaller values of BG. The anomalies in sign of D4 and

D 5 for B = 0 seem to be part of a family that travels to higher values

of k with increasing B --it appears in D 5 for B = i and 2 and can be

traced in higher modes at larger BG . (Scattered evidence has been pro-

duced to suggest that the alternation is reestablished beyond the anomaly.)

Because the eigenmodes are normalized so that hk(rw) alternate in sign,

so do the columns in Table Ilb. Thus, it turns out that the products

Dk Yk ' k _ 2 , are generally negative for factors taken from a common

line in Tables lla and llb. The exceptions are the anomalies just noted.

The products Dk Yk are independent of the normalization of _k and hk

(page 71) and tend to be of comparable_ moderate orders of magnitude for

a common line in Tables lla and lib. Hence, the convergence of the series

(iii) depends mainly upon the imposed frequency _ being markedly dif-
o

ferent from the natural frequencies _k " For _o < _i ' the growth of

2
_k with k enforces the convergence, and the five terms from Tables lla

and llb have sufficed to give three significant figures, in general.
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Figure ii (all quantities are dimensionless) gives the maximum rise height

h for the sinsusoidal perturbation B = B sin co t calculated from (lll)
W T T 0

as a function of _o/_l , the ratio of the perturbing to the fundamental

frequency. The plotted ordinate is hw where B = pg r° /_ is theT

maximum value of the transverse Bond number; the parameters are the depth

h = h/r ° and the axial Bond number Ba = og_ ro2/_ • The expected resonance

(_o/_l)2 is indicated. The effect of increasing BC_ is to reduce theat

response to lateral perturbing accelerations. Note also that the effect

of decreasing h° is unnoticeable at Bc_ = 0 , but as B increases, the

response is further reduced.

Although the responses to the square wave and the periodic pulsing lateral

perturbing accelerations (see Figure 12) do not necessarily reach their

maximum rise height at the wall for time t = w/2zo° , specializing (30) and

(31) to this value of t leads to a useful comparison. The specializations

are in view of (113) linear combinations of hk(rw) , namely:

m-1
CO CO _ I

l+B w = m=l 1-(_--modd m ) _k

Square wave :

h ]e=O

r=r
w

Periodic pulse :

h ]e=o

r=r
w

mSn

B 4 k_l [ _"_ sin_ ] Dkgk(rw)
- 1+% _ 2

= mm=lodd mi , %

(llk)

(ll5)
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where Dk is given by (29), Yk(r) by (ll2), and 6 = at _o/W is the

ratio of the pulse width to the half-period. The inner series in (114) and

(115) are clearly convergent and depend only on the ratio _o/_k .

the dominant term may occur very far out in the series if _k/_o

approximation to an odd integer. Worse yet, resonance occurs if

odd submultiple of a natural frequency _k " An effect of the submultiple

resonances is to admit negative rise heights at the wall. Consequently,

evaluation of (114) and (115) in a survey for the cases reported here, even

with _o restricted to o < _o < e I , is bound to yield "noisy" results.

Nevertheless, because the evaluations are instructive, Tables llla and lllb

give the values of h/B obtained from (114) and (115) for selected
T

ratios of _o/_i (with the same parameters as used in plotting the

sinusoidal perturbations). In Table lllb, the value of 6 is 0.01.

However,

is a close

is an
o

In Table Ilia, even though the entries are not maximum rise heights, the

effect of the resonance at _o = el seems to be more pronounced than in

the sinusoidal case--in fact, the positive values in the last columns lie

well above the corresponding curves in Figure ii. In common with the

sinusoidal case, the effect of decreasing B seems to be to reduce

the response. Again, the effect of decreasing h is almost unnoticeable
O

for B 0 , but results in a marked reduction of the response as B in-

creases. The five terms presented in Tables I, lla, and llb generally

are sufficient to give three digits in evaluating (114) for Table llla.
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However, to obtain consistent results in evaluating (ll5) for Table IIIb,

it is necessary to use all the terms available: that is, Dk _k(rw)/_k2

for k = 6, 7, and 8 are included in most of the sums--although these

values may not be reliable. The results in Table IIIb tend to confirm the

conclusions drawn from the sinusoidal and square wave cases. Both Table IIIa

and IIIb support the observation made earlier, namely that the method is

best applied to the analysis of specific cases with a limited set of para-

meters so that the submultiple resonances can be clearly identified.

In principle, by appropriate modification, say replacing _k(rw) by _k(r),

analogues for (lll), (114), and (I15) can be developed to trace as a

function of time the behavior of the free-surface throughout the tank

in response to a lateral perturbation. However, contemplation of Figure lO

and the implications of (ll4) and (ll5) suggests that perhaps more eigen-

modes of higher accuracy are needed to yield reliable results when the

present method is applied throughout the tank.

Mechanical analog parameters for first mode lateral sloshing are shown in

Figures 13 and 14, namely: the nondimensional equivalent spring constant,

lateral force, equivalent mass, and lateral force action point. Here the

function of the spring constant plotted in Figure 13, namely _l/(l+B_) ,

and the sloshing mass _in Figure 14 both decrease strongly with B

toward the asymptotic values for B = _. For large depths, others (3)

report (in the normalization used here) _l/(l+B_) as slowly increasing

and_ as increasing toward the asymptotic value with B. However, the
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results of test calculations using the present program for ® = 90 degrees

and large depth check well, for all four parameters, with the closed form

solutions for ® = 90 degrees in a deep flat-bottomed tank. Consequently,

even though the results for ® = 5 degrees must be viewed with some caution,

they are considered valid because they are computed by a program that

checks well for ® = 90 degrees and large depth.

Parameters are presented only for fundamental mode. The reason is that the

parameters depend upon the potential along the tank wall as well as upon

the potential on the free-surface; the former is less reliable than the

latter. Only the fundamental gives parameters accurate enough to use. The

parameters for higher modes are available in principal and await more accurate

potentials.

The present data for the mechanical analog may be used when it can be

definitely established that the first term in the series (see (lll), (i14),

or (115)) is dominant. In such cases, the nondimensional right-hand side

of (41), (42), (43), and (44) needed to implement the mechanical analog

can be read from Figures 13 and 14 (the actual ordinates in the former are

F1/(I+B) .

In capsule, the results of this study are that it is possible to compute

at least the first five normal sloshing frequencies in a cylindrical tank

with a hemispherical bottom under low gravitational conditions when the
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free-surface is highly curved because of surface-tension effects. The

simultaneous determination of normal sloshing eigenmodes permits representing

the small-amplitude free-surface response to periodic lateral perturbations

by expanding the surface shape in a truncated Fourier series. A survey

of these expansions (restricted to the tank wall) shows that increasing

the axial Bond number or decreasing the depth tends to reduce the response to

lateral perturbations. Still further results are equivalent mechanical

analog parameters which simplify routine engineering calculations of first

mode sloshing under low gravitational conditions.
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TAHLE I

Lateral Sloshing Eigenvalues

For Cylindrical TankWith Hemispherical Bottom

@ = 5 degrees

Bond No.

i0

2O

5O

Depth Eigenvalues coZ = _2[(I+B )e/Pro3] -I

ho=_Jro
k=l 2 :3 4

3 2.81 34.6 137 353 723

2 2.80 34.6 137 353 723

i 2.69 34.0 136 353 723

1/2 2.11 31.5 131 349 721

1/4 1.33 24.8 113 314 675

1/10 0.59612._ 63.6197 465

3 2.38 26.2 95.8 239 480

2 2.38 26.2 95.8 239 480

I 2.25 25.8 95.7 239 480

1/2 1.65 23.6 92.0 235 477

1/4 ___0.98116.7 ____74.1 203 432

I/I0 0.403 12.5 73.0 239 578

3 2.21 22.4 78.3 191 380

2 2.20 22.4 78.3 191 380

I 2.07 22.1 78.3 191 381

1/2 ___1.49 20.2 75.6 188 378

1/4 0.717 11.8 54.2 154 338

1/10 0.397 12.7 74.2 240 not produced

3 2.00 17.0 55.4 131 255
i 1.85 16.8 55.3 131 255
1/2 1.17 ___14.1 50.8 124 245
1/4 0.61_ 9.93 45.7 129 279
1/io 0.4o8 ii.8 67.3 214 502

3 1.90 13.3 40.4 92.1 176

2 1.90 13.3 40.4 92.2 177

I 1.72 ____13.2 40.3 92.1 177

1/2 1.02 10.4 35.1 83.5 164

1/4 0.604 8.74 38.3 104.1 219

I/i0 0.434 10.6 58.2 180.5 417

3 1.85 10.2 28.6 62.5 ]]7

I _1.62 i0.i 28.5 ____62.3 ____i17

1/2 0.941 8.11 25.5 58.9 114

1/4 0.629 7.62 30.8 80.1 165

1/10 0.475 9.34 48.1 144 325

3 1.84 7.54 18.2 36.7 65.2

2 1.83 7.55 18.3 36.8 65.5

i ______1.58 ______7.48 .... 18.2 36.6 65.1

1/2 0.939 6.40 17.5 37.3 68.7

1/4 0.701 6.41 22.1 52.7 103

1/lO 0.549 7.77 35.7 i01 218
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TA_E IIa

Fourier Coefficients

0,
For Cylindrical Tank With Hemispherical Bottom

G = 5 degrees

Bond No. Depth

B_= (og_ro21_) ho=_o/r ° k = 1 2 3 4 5

0 3 .492 .449-1 -.273-2 - .752-3 .325-3

2 .492 .447-1 -.276-2 -.750-3 .325-3

I .493 .405-1 - .341-2 - .657-3 .344-3

1/2 .494 .251-1 -.333-2 .199-3 •i_7-3

1/4 .494 .I43-i - .163-2 .344-3 -. 878-4

1/lO .495 .98o-2 -.638-3 .155-3 -.541-4

I 3 .548 .382-1 -.635-2 .195-3 .338-3

2 .548 .381-1 -.636-2 .197-3 .337-3

I .549 .326-1 -.663-2 .397-3 .318-3

1/2 .549 .177-1 - .425-2 .824-3 -. 841-4

1/4 .549 .155-1 -.163-2 .211-3 -.438-4

1/10 .447 .124-1 -.764-3 .133-3 -.395-4

2 3 .579 .326-1 -.828-2 .111-2 .149-3

2 .579 .325-1 -.828-2 .111-2 .149-3

i .578 .264-1 -.817-2 .131-2 .939-4

1/2 .579 .140-1 -.455-2 .113-2 -.236-3

1/4 .572 .232-1 -.227-2 .217-3 -.374-4

1/10 .407 .ii0-I -.792-3 .134-3 not produced

5 3 .621 .2o6-1 -.lO4-1 .303-2 - .625-3

i .621 .14o-1 -.940-2 .309-2 -.717-3

1/2 .621 .116-1 -.461-2 .126-2 -.299-3

1/4 .555 .244-1 -.319-2 .472-3 -.931-4

I/iO .348 .986-2 -.871-2 .151-3 - .440-4

IO 3 .649 .821-2 -.lO3-1 .456-2 -.166-2

2 .649 .8Ol-2 -.lO2-1 .455-2 -.166-2

i .649 .171-2 - .835-2 .422-2 - .168-2

1/2 .646 .158-1 -.674-2 .208-2 -.548-3

1/4 .515 .233-1 -.372-2 .7Ol-3 -.157-3

1/lO .320 .937-2 -.957-3 .175-3 -.504-4

20 3 .671 -.609-2 -.782-2 .526-2 -.271-2

I .671 -. i12-i -.498-2 .420-2 -.241-2

1/2 .638 -.183-1 -.820-2 .300-2 -.102-3

1/4 .468 .221-1 -.421-2 .986-3 -.263-3

1/10 .261 .913-2 -.106-2 .208-3 -.601-4

50 3 .687 -.269-1 -.115-2 .382-2 -.304-2

2 .687 -.271-1 -.108-2 .379-2 -.303-2

i .687 -.271-1 .130-2 .221-2 -.217-2

1/2 .599 .162-1 -.880-2 .400-2 -.176-2

1/4 .412 .199-1 -.479-2 .143-2 - .463-3

1/10 .215 .889-2 -.123-3 .272-3 -.817-4

Note: Tabulated numbers are in mantissa form; e.g. first number in k=3 column is

-0.00273.
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Bond No.

B_(pgJo2/O)

0

1

2

5

lO

2O

50

Note :

TABLE lib

Unnormalized Eigenmode at Wall

8_ k

_k(rw ) = _k_(rw ) = [ (l+fr 2)I/2 _- }r=r
W

For Cylindrical Tank With Hemispherical Bottom

@ = 5 degrees

Depth

ho=hJr ° k = I 2 3 4

3 .379+1 -. 376_ 2 .119+ 3 -. 258+ 3

2 .379+1 -. 376+2 .119+3 °. 258+3

i •361+1 - •371+2 •119+3 - .258+3

I/2 .276+1 -. 332_2 .116+3 - .257+3

1/4 .171+1 -. 269+ 2 •103 + 3 -. 241+ 3

1/lO .754 -._9+2 .550+2 -.142+3

3 .320+1 - .300+2 .946+2 - .207+3

2 .320+1 - •300+ 2 .946+ 2 - •207 + 3

i .30(_ i -. 298+ 2 •946+ 2 -. 207+ 3

1/2 .215+1 - •277+2 .929+2 - .2o5+3

1/4 .126+ i -. 191+ 2 .741+ 2 -. 179 + 3

1/10 .487 -. 679+1 .240+ 2 -. 555+ 2

3 .296+1 -. 261+ 2 .818+ 2 .18o+ 3

2 .295+1 -. 261+ 2 .818+ 2 -. 180+ 3

i .274+1 - .260+2 .817+2 - .180+3

1/2 .194+1 -. 239+ 2 .805+ 2 -. 179+ 3

1/4 .917 -. 117+ 2 .405 + 2 -. 903 + 2

1/10 .516 -. 697+ 1 .24 i+ 2 -. 547+ 2

3 .268+1 -.200+2 .617+2 - .136+3

i .244+1 - .200+2 .616+2 - .136+3

1/2 .152+ 1 -. 170+ 2 .565 + 2 -. 129+ 3

1/4 .820 -. 853 +I .261+ 2 -. 544 + 2

I/i0 .613 -. 756+1 .251+ 2 -. 556+ 2

3 .255+1 _ .155+2 .464+2 -.102+3

2 .254+1 -.155+2 .464+2 -.102+3

1 •227+1 -.156+2 .464+2 -. i02_3

1/2 .135+1 - •122+2 •362+2 - .773+2

i/4 .870 - .793+1 .226+ 2 - •455+2

1/10 •739 - .821+i .262+2 - .568+2

3 .249+1 - .118+2 .333+2 - •717+2

i .216+1 - .119+2 .333+2 -.715+2

1/2 .13Q. -.928+i •241+2 -.477+2
1/4 .991 -.786+i .2o6+2 -.4o0+2

I/I0 .920 - •9OO.1 .273+ 2 - •576+ 2

3 .250+1 -. 887+ i .213 + 2 -. 430+ 2

2 .249+ I -. 888+ I .214+ 2 -. 431+ 2

i .213+1 -.881,-1 .213+2 - .429+2

1/2 .139+1 -. 798+1 .176+ 2 -. 323+2

I/4 .124+ 1 -. 826+ 1 .192+ 2 - •353+ 2

1/10 •125+1 -.103+2 .285+2 -.756+2

Tabulated numbers in mantissa form. See Table fla.

5

•467+ 3

•467+3

.467+3

.469+3

•448+3

.286+3

-379+3

•379+3

•379+3

.377+3

•346+ 3

•103+3

•331+3

.331+3

.331+3

.331+3

•163+ 3

not produced

•252+ 3

•252+ 3

.242+3

•942+ 2

.100+3

.189+3

.189+3

.189+3

.140+3

.775+2

.101+3

•132+2

•131+ 3

.820+2

.669+2

.i01+3

•763 + 2

•768+ 2

•762+ 2

.529+2

.573+2

•982+ 2

i01
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Bond No. Depth

B_=_g_ro21_ ho=_Jr°

TABLE Ilia

Calculated Response

to

Square Wave Lateral Perturbing Acceleration

_9 = 5 degrees

W W (_
-A---

BT r 2o Og r
T o

(COo/COl)2 = O. Ol O. 03 O. 1 0.2 O.5 0.?

I0

2O

5O

Note:

3 .141+i .128+I -.159+i .128+I .262+i .266+i

2 •139+1 .127+I -.160+i .128+I .267+i .266+I

I .125+1 .128+1 -.175+1 .128+1 .557 .266+1

1/2 .120+1 .120+1 -.160+1 .130+1 .156+1 .267+1

1/4 •130+I .178+i -. 191+i .124+i .166+I .252+i

i/i0 .121+1 .125+1 - .185+1 .126+1 .160+1 .262+1

3 .580 .787 -.I08+i .722

2 .585 .782 -.i08+I .722

i .631 .710 -.i09+i .710

1/2 .656 .712 -.i02+I .718

1/4 .6&6 .709 -.117+i .675

1/10 .532 .549 -.797 .552

.i00+I

•102+1

.9_

.868

.892

.?09

.148+1

.1A8+1

._8+1

.150+1

.156+i

.U4+1

3 .484 .458 -.768 -559 .649 .i06+i

2 .484 .458 -.770 .557 .649 .106+1

i .492 .423 -.748 .511 .657 .105+1

1/2 .504 .457 -.723 .501 .607 .i05+i

1/4 .470 .490 -.674 .414 .608 .i04+I

I/i0 .349 .360 -.520 .362 .461 .742

3 .234 .284 -.416 .256 .351 .564

i .2_ .260 -.413 .252 .350 .562

1/2 .248 .270 .212 .272 .370 .568

1/4 .238 .254 -.349 .471 .309 .523

I/i0 .170 .186 -.296 .178 .228 .368

3 .142 .157 -.232 .150 .197 .334

2 .142 .157 -.232 .15o .197 .333

i .15o .156 -.221 .147 .193 .329

1/2 .147 .148 -.231 .160 .202 .349

1/4 .126 .13o '.195 .136 .167 .282

1/lO .906-i .954-i -.137 .i0o .178 .197

3 .853-i .823-I -.127 .i03 .Ill .176

1 .831-i .882-i -.129 .839-i .i12 .128

1/2 .770-I .999-I -.130 .796-i .i08 .173

I/4 .623-1 .697-1 .553 .701-1 .980-1 .146

I/i0 .473-1 .477-1 -.709-1 .476-1 .615-1 .i00

3 .377-1 .379-1 -.557-i .410-i .520-i .818-I

2 .378-i .379-i -.558-1 .401-I .521-i .817-1

1 .385-1 .380-i -.519-I •362-1 .452-1 .821-1

1/2 .284-I .423-i -.499-1 .328-I .446-I .739-i

1/4 .259-i .267-i -.421-i .261-I .362-1 .586-i

1/10 .181-1 .187-1 -.277-1 .193-1 .240-1 .403-1

Tabulated numbers in mantissa form. See Table IIa.

105

LOCKHEED MISSILES & SPACE COMPANY



Bond No. Depth

_a=o_ro21O ho='_o/ro

TABLE llIb

Calculated Response

to

Periodic Pulse Lateral Perturbing Acceleration

of Width 0.01 w/coo for ® = 5 degrees

h
W W

_-'-= -- 2
BT ro 0g r

T O

(c_/COl)2_ = 0.01 0.03 0.i

LMSC-A852007

NASA CR-54700

0.2 0.5 0•7

I0

2O

5O

3 -.122 .273-I ,684-i -.760-2 .986-i .384-i

2 - .I-13 .270-i .699-I -.790-2 .I02 .384-i

I -.263-I .301-I .987-i -.880-2 -.628-i •385-1

1/2 -.306-1 .248-I .203 - .170-2 •131-1 .395-1

1/4 -.544-I .375 .970-i - .920-2 .310-i .381-i

i/I0 -.400-3 .259-I .121 -.900-2 .194-i .357-i

3 -. 438-i -. 144- i .694-i -. 820-2
2 -. 405-I -. 128-1 •689-1 -. 810- 2

I -.890-2 .490-2 .754-i -.560-2

1/2 -. 120- 2 -.730-2 .653-1 - .180-2

1/4 -.820-2 .103-1 .375-1 - .930-2

i/i0 -.100-3 .990-2 .509-1 -.290-2

.228-I

.252-1

.136-i

.920-2

.i00-I

.66O-2

•188-1

•173-1

.208-1

.240-1

.273-1

.164-i

3 -.430-2 .127-1 .503-1 - .131-1 .830-2 .122-1

2 -.340-2 .129-1 .507-1 -.128-1 .840-2 .123-1

i .940-2 .250-1 .467-1 -.670-2 .960-2 .137-1

1/2 .390-2 .560-2 .462-1 -.380-2 .520-2 .146-1

114 .134-I .480-2 •516-1 -.128-I .670-2 .168-I

I/i0 .330-2 .890-2 .333-1 -.160-2 .510-2 .110-1

.340-2

.380-2

.580-2
• 340- 2

.250-2

3 -.740-2 .142-1 .233-1 -.120-2

I .430-2 .200-2 .242-1 .300-3

112 .390-2 .460-2 -.797-I - .230-2

1/4 .130-2 .000 .242-i .299-i

I/I0 .400-3 -.170-2 .600-2 - .110-2

• 750- 2

.810-2

.790-2

.8OO-2

.520-2

3 .100-3 .200-2 .154-1 -.120-2 .230-2 .350-2

2 .500-3 .260-2 .155-1 -.120-2 .240-2 .390-2

I -.320-2 .260-2 .135-I .700-3 .3o0-2 .450-2

i/2 .240-2 .320-2 .151-I -.300-2 .260-2 .170-2

1/4 .I(X)-3 .220-2 .122-I -. 600-3 .170-2 .400- 2

1/10 -.100-3 .240-2 .880-2 -.160-2 -.490-2 .270-2

3 -.120-2 .150-2 .780-2 .180-2 .i00-2 .330-2

I .900- 3 .220-2 .790-2 -. I00- 3 .130- 2 -. 230- 2

1/2 -.180-2 .630-2 .550-2 -. 400- 3 .i00-2 .230-2

1/4 .200-2 .120-2 -.106 -.600-3 .180-2 .200-2

1/10 .400-3 .700-3 .450-2 -.100-3 .700-3 .130-2

3 -.100-3 .900-3 .370-2 .200-3 .500-3 .800-3

2 .20(03 .800-3 .370-2 -.500-3 .500-3 .100-2

I .300-3 .400-3 .330-2 -.400-3 .800-3 .110-2

1/2 .360-2 .200-3 .290-2 -. 3(X)-3 .600-3 .700-3

1/4 .200-3 .300-3 .250-2 .000 .400-3 .140-2

1/10 .000 .300-3 .180-2 -.i00-3 .200-3 .600-3

Note: Tabulate numbers in mantissa form. See Table IIa.
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